Non-geometric fluxes and non-associativity in M-theory

Emanuel Malek

Arnold Sommerfeld Centre for Theoretical Physics, Ludwig-Maximilians-University Munich.

Strings seminar, IPNL + ENS Lyon

C. Blair, EM arXiv:1412.0635, M. Günaydin, D. Lüst, EM arXiv:1607.06474

Non-geometric backgrounds

- String phenomenology based on compactifications, e.g. $M_4 \times CY_3$.
- Fluxes play important role for moduli stabilisation, etc.
- T-duality suggests existence of "non-geometric fluxes" Q_i^{jk} , R^{ijk} .
- Such "T-fold" backgrounds are patched by T-dualities: not manifolds! [Hull hep-th/04061202]
- Non-geometric fluxes rich phenomenological structure.
- Related to "exotic branes" [de Boer, Shigemori arXiv:1209.6056].
- "Geometry" fails
 - Globally non-geometric background (metric, B-field globally ill-defined)
 - ► Locally non-geometric background (no local target space interpretation, **no point particles**, ...)
- \bullet Double field theory & exceptional field theory "geometrise" T/U-folds.

T^3 duality chain

- Consider 3-d compactification with H-flux, e.g. T³ with H-flux. [Kachru, Schulz, Tripathy, Trivedy hep-th/0211182] [Shelton, Taylor, Wecht hep-th/0512005]
- $H_{ijk} \xrightarrow{T_i} f_{jk}^i \xrightarrow{T_j} Q_k^{ij} \xrightarrow{T_k} R^{ijk}$, $(i, j, k = 1, \dots, 3)$.
- T_i denotes T-duality along x^i direction.
- H_{ijk} , f_{jk}^i , Q_k^{ij} , R^{ijk} appear naturally in the embedding tensor of half-maximal gSUGRA.
- Start with T^3 with H-flux:

$$ds^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2$$
, $B_{12} = Nx^3$. (1)

- Identifications: $(x^1, x^2, x^3) \sim (x^1 + 1, x^2, x^3) \sim (x^1, x^2 + 1, x^3) \sim (x^1, x^2, x^3 + 1)$.
- *H*-flux: $H_{123} = N$.

II: Twisted Torus

• Duality along x^1 gives twisted torus \tilde{T}^3 :

$$ds^2 = (dx^1 - Nx^3dx^2)^2 + (dx^2)^2 + (dx^3)^2, \qquad B_{ij} = 0.$$
 (2)

• Identifications:

- \tilde{T}^3 is a U(1)-bundle over T^2 with 1st Chern class $H_2(T^2,\mathbb{Z})\ni [c_1]=N\neq 0$.
- Geometric flux can be defined using globally well-defined 1-forms

$$\eta^{1} = dx^{1} - Nx^{3}dx^{2}, \qquad \eta^{2} = dx^{2}, \qquad \eta^{3} = dx^{3},
d\eta^{i} = f_{ik}^{i}\eta^{j} \wedge \eta^{k}, \qquad f_{23}^{1} = N.$$
(4)

III: Globally non-geometric background

- Duality along x^2 gives non-geometric background.
- Buscher rules:

$$ds^{2} = \frac{\left(dx^{1}\right)^{2} + \left(dx^{2}\right)^{2}}{1 + N^{2}(x^{3})^{2}} + \left(dx^{3}\right)^{2}, \qquad B_{12} = \frac{Nx^{3}}{1 + N^{2}(x^{3})^{2}}.$$
 (5)

- Globally only defined up to T-duality transformation.
- Well-defined background in DFT with doubled coordinates $(x^1, x^2, x^3, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$.
- "Section" (polarisation) not globally well-defined: mixing of x^i and \tilde{x}_i .
- Globally, momentum and winding are mixed.

III: Q-flux

• DFT / generalised geometry description leads to alternative well-defined objects $(\hat{g}_{ij}, \beta^{ij})$ [Graña, Minasian, Petrini, Waldram arXiv:0807.4527], given by

$$\beta^{ij} = \frac{1}{2} \left((g - B)^{-1} - (g + B)^{-1} \right)^{ij},$$

$$\hat{g}_{ij} = \frac{1}{2} \left((g - B)^{-1} + (g + B)^{-1} \right)_{ij}^{-1}.$$
(6)

Here they are

$$\hat{ds}^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2, \qquad \beta^{12} = Nx^3.$$
 (7)

- As $x^3 \to x^3 + 1$, $\beta^{12} \to \beta^{12} + N$.
- ullet DFT / GG easily show this is a symmetry $\Rightarrow \hat{g}_{ij}, \ eta^{ij}$ well-defined.
- Background classified by "Q-flux" which is a spacetime tensor, here given by [Andriot, Hohm, Larfors, Lüst, Patalong arXiv:1202.3060]

$$Q_i^{jk} = \partial_i \beta^{jk}, \quad \Rightarrow \quad Q_3^{12} = N.$$
 (8)

IV: R-flux

- Duality along x^3 gives locally non-geometric background.
- x^3 not isometry \Rightarrow Buscher fails.
- T-duality is left/right asymmetric twist on CFT.
- Formally apply this asymmetric twist: "generalised T-duality" [Dabholkar, Hull hep-th/0512005].
- "Dual coordinates" \tilde{x}_3 appear.
- Winding number not conserved
- ⇒ there are no zero-winding states: point-particle approximation fails
 ⇒ no SUGRA picture.
- Target space picture non-existent.

IV: R-flux

- Background makes sense in DFT because of $(x^1, x^2, x^3, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$.
- \Rightarrow Formally apply Buscher as if x^3 were isometry and exchange $x^3 \longleftrightarrow \tilde{x}_3$:

$$d\hat{s}^2 = (dx^2)^2 + (dx^2)^2 + (dx^3)^2, \qquad \beta^{12} = N\tilde{x}_3.$$
 (9)

 Background classified by "R-flux" which is a spacetime tensor, here given by

$$R^{ijk} = \hat{\partial}^{[i}\beta^{jk]}, \quad \hat{\partial}^{i} = \tilde{\partial}^{i} + \beta^{ij}\partial_{j}, \qquad \tilde{\partial}^{i} = \frac{\partial}{\partial \tilde{x}_{i}}.$$
 (10)

• We have $R^{123} = N$. [Andriot, Hohm, Larfors, Lüst, Patalong arXiv:1202.3060].

Non-geometric fluxes in M-theory

- Consider 4-d U-folds: 4-d backgrounds patched by U-dualities.
- Described naturally by SL(5) exceptional field theory: 10 coords x^{α} , $\tilde{x}_{[\alpha\beta]}$, $\alpha=1,\ldots,4$.
- H-flux, geometric flux and Q-flux generalise easily. But how do we generalise R^{ijk} ?
- Non-geometric fluxes made uses \hat{g}_{ii} , β^{ij} .
- From SL(5) EFT, natural variables: $(g_{\alpha\beta}, C_{\alpha\beta\gamma}) \longrightarrow (\hat{g}_{\alpha\beta}, \Omega^{\alpha\beta\gamma})$.
- $Q_{\alpha}^{\beta\gamma\delta} = \partial_{\alpha}\Omega^{\beta\gamma\delta}$.
- $R^{ijk} = \hat{\partial}^{[i}\beta^{jk]} \longrightarrow R^{\alpha\beta\gamma\delta\rho} = \tilde{\partial}^{[\alpha\beta}\Omega^{\gamma\delta\rho]} = 0$ not possible!

Local non-geometry in M-theory

- Recall: fluxes H_{ijk} , f_{ij}^k , Q_i^{jk} , R^{ijk} are spacetime tensors naturally appearing in embedding tensor of 1/2-maximal gSUGRA.
- M-theory non-geometric fluxes are spacetime tensors appear naturally in embedding tensor of maximal gSUGRA.
- [Blair, EM arXiv:1412.0635] \Rightarrow M-theory R-flux is given by

$$R^{\alpha,\beta\gamma\delta\rho} = \hat{\partial}^{\alpha[\beta}\Omega^{\gamma\delta\rho]}, \qquad (11)$$

with
$$\hat{\partial}^{\alpha\beta} = \tilde{\partial}^{\alpha\beta} + \Omega^{\alpha\beta\gamma}\partial_{\gamma}$$
 and $\tilde{\partial}^{\alpha\beta} = \frac{\partial}{\partial x_{\alpha\beta}}$.

- ullet One can check that $R^{lpha,eta\gamma\delta
 ho}$ transforms as a spacetime tensor.
- Toy model of non-geometric background?

M-theory non-geometry via twisted torus

- U-duality along 3 directions: 11-d background \Leftrightarrow 11-d background.
- $\bullet \ \, \mathsf{E.g.} \ \, F_{\alpha\beta\gamma\delta} \overset{U_{\beta\gamma\delta}}{\longleftrightarrow} \, Q_{\alpha}^{\beta\gamma\delta}, \ \, f_{\beta\gamma}^{\delta} \overset{U_{\alpha\beta\gamma}}{\longleftrightarrow} \, R^{\alpha,\beta\gamma\delta\alpha}.$
- ullet Consider twisted torus $\tilde{T}^3 imes S^1$

$$ds_4^2 = \underbrace{\left(dx^1 - Nx^3dx^2\right)^2 + \left(dx^2\right)^2 + \left(dx^3\right)^2}_{\text{twisted torus }\tilde{T}^3} + \underbrace{\left(dx^4\right)^2}_{S^1}, \tag{12}$$

with identifications

$$(x^{1}, x^{2}, x^{3}, x^{4}) \sim (x^{1} + 1, x^{2}, x^{3}, x^{4}) \sim (x^{1}, x^{2} + 1, x^{3}, x^{4})$$

$$\sim (x^{1}, x^{2}, x^{3}, x^{4} + 1) \sim (x^{1} + Nx^{2}, x^{2}, x^{3} + 1, x^{4}) .$$
(13)

• Recall: $\tilde{T}^3 = U(1)$ -fibration over T^2 : 1st Chern class $H_2(T^2, \mathbb{Z}) \ni [c_1] = N =$ "geometric flux".

M-theory non-geometry via twisted torus

- Duality along x^2 , x^3 , x^4 gives R-flux background.
- Naively via Buscher: $x^3 \longleftrightarrow -\tilde{x}_{24}$ and

$$ds_{11}^{2} = \left(1 + N^{2}\tilde{x}_{24}^{2}\right)^{1/3}ds_{7}^{2} + \left(1 + N^{2}\tilde{x}_{24}^{2}\right)^{1/3}\left(dx^{3}\right)^{2} + \left(1 + N^{2}\tilde{x}_{24}^{2}\right)^{-2/3}\left(\left(dx^{1}\right)^{2} + \left(dx^{2}\right)^{2} + \left(dx^{4}\right)^{2}\right),$$

$$C_{3} = \frac{N\tilde{x}_{24}}{1 + N^{2}\tilde{x}_{24}^{2}}dx^{1} \wedge dx^{3} \wedge dx^{4}.$$

$$(14)$$

"Non-geometric frame":

$$\hat{ds}_{11}^2 = ds_7^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2 + (dx^4)^2, \quad \Omega^{134} = N\tilde{x}_{24}.$$
(15)

• R-flux: $R^{\alpha,\beta\gamma\delta\rho} = 4\hat{\partial}^{\alpha[\beta}\Omega^{\gamma\delta\rho]} \Rightarrow R^{4,1234} = N$

Non-commutativity / non-associativity in string theory

- Non-commutativity well-studied in *open-string sector*. D-branes with non-vanishing *B*-field.
- Analogous to electron in magnetic field where momenta are non-commutative.
- What about closed string sector?
- Non-geometric fluxes lead to non-commutativity & non-associativity [Lüst arXiv:1010.1361], [Blumenhagen, Plauschinn arXiv:1010.1263], Andriot, Bakas, Condeescu, Fuchs, Florakis, Mylonas, Larfors, Patalong, Szabo, Schupp....

Electrons in magnetic field

- Following Jackiw 1985: electrons in magnetic field experience non-commutativity & non-associativity appears.
- Consider electrons in \mathbb{R}^3 with magnetic field B: Lorentz force

$$\dot{\pi}^i = \frac{e}{2m} \epsilon^{ijk} \pi_j B_k \,, \tag{16}$$

- \bullet π^i are physical gauge-invariant momenta. Not canonical momenta!
- Energy ⇒ Hamiltonian

$$H = \frac{\pi^i \pi_i}{2m} \,. \tag{17}$$

• Equations of motion ⇒ twisted Poisson-bracket:

$$[x^i, x^j] = 0, \qquad [x^i, \pi_j] = i\hbar \delta^i_j, \qquad [\pi_i, \pi_j] = ie\frac{\hbar}{c} \epsilon_{ijk} B^k.$$
 (18)

• Non-commutativity of momenta.

Electrons in magnetic field

• Twisted Poisson-bracket:

$$[x^i, x^j] = 0, \qquad [x^i, \pi_j] = i\hbar \delta^i_j, \qquad [\pi_i, \pi_j] = ie\frac{\hbar}{c} \epsilon_{ijk} B^k.$$
 (19)

Non-associativity:

$$Jac(\pi_1, \pi_2, \pi_3) \equiv [\pi_1, [\pi_2, \pi_3]] + \ldots = \frac{e\hbar^2}{c} \partial_i B^i.$$
 (20)

- Magnetic monopoles: $\nabla \cdot B = \rho_{mag} \neq 0 \Rightarrow$ non-associativity.
- Consider algebra of "translations":
- $U(a) = \exp(-\frac{i}{\hbar}a^i\pi_i)$ generate (non-commutative) translations.

Electrons in magnetic field

Algebra of translations:

$$\begin{split} U(a_1)U(a_2) &= \exp\left(-\frac{ie}{\hbar c}\Phi(a_1,a_2)\right)U(a_1+a_2)\,,\\ (U(a_1)U(a_2))\,U(a_3) &= \exp\left(-i\frac{e}{\hbar c}\Phi(a_1,a_2,a_3)\right)U(a_1)\left(U(a_2)U(a_3)\right)\,. \end{split}$$

• $\Phi(a_1, a_2)$ is flux through triangle formed by a_1 , a_2 , $\Phi(a_1, a_2, a_3)$ is flux through tetrahedron formed by a_1 , a_2 , a_3 :

$$\Phi(a_1, a_2) = \int_{\Delta_{a_1, a_2}} B \cdot dS , \quad \Phi(a_1, a_2, a_3) = \int_{\Delta_{a_1, a_2, a_3}} B \cdot dS , \quad (21)$$

- Algebra should be associative (QM wants linear operators on a Hilbert space).
- \Rightarrow Flux quantisation: $\int \nabla \cdot B \in 2\pi \frac{\hbar c}{e} \mathbb{Z}!$

Non-geometric = non-commutative + non-associative

 CFT scattering calculations & canonical quantisation in dilute flux limit give non-commutative Q-flux algebra:

$$\left[x^{i}, x^{j}\right] = \frac{il_{s}^{3}}{\hbar} Q_{k}^{ij} w^{k} . \tag{22}$$

- Non-commutativity parameter $\Theta^{ij} = \frac{il_s^3}{\hbar} Q_k^{ij} w^k$ depends on winding number w^i .
- In R-flux background one finds:

$$[x^{i}, x^{j}] = \frac{il_{s}^{3}}{\hbar} R^{ijk} p_{k},$$

$$[x^{i}, p_{j}] = i\hbar \delta_{j}^{i}, \qquad [p_{i}, p_{j}] = 0,$$

$$[x^{i}, x^{j}, x^{k}] = \frac{1}{3} [x^{i}, [x^{j}, x^{k}]] + \dots = l_{s}^{3} R^{ijk}.$$
(23)

• Note: same algebra as for electron in magnetic field (with $x^i \leftrightarrow \pi_i$).

Non-associative strings

- $[x^i, x^j, x^k] = l_s^3 R^{ijk}$ gives "minimal volume" $\Delta x^i \Delta x^j \Delta x^k \ge l_s^3 R^{ijk} \Rightarrow$ no point-particles.
- Magnetic charge algebra and R-flux algebra are examples of Malcev algebras: $X \star Y = -Y \star X$, $Jac(X, Y, X \star Z) = Jac(X, Y, Z) \star X$. [Günaydin,Zumino 1985] [Bakas, Lüst arXiv:1309.3172].
- Rich mathematical framework for non-associative structures [Mylonas, Schupp, Szabo arXiv:1207.0926, arXiv:1312.1621, arXiv:1402.7306, ...]
 [Bakas, Lüst arXiv:1309.3172].
- Non-associative structure disappears upon momentum conservation⇒ crossing symmetry of CFT OPEs. [Blumenhagen, Deser, Lüst, Plauschinn, Rennecke arXiv:1106.0316].

The octonions and the R-flux algebra

- Mathematics: how is the R-flux algebra related to other non-associative structures, e.g. octonions (also a Malcev algebra)?
- Physics: how does the R-flux algebra lift to M-theory?
- Conjecture: the answers are related.

Octonions

- There are four division algebras: over \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{O} .
- Division algebra of real octonions \mathbb{O} : non-commutative, non-associative *Malcev algebra*.
- Elements: identity, $I_1 + 7$ "imaginary" units, e_A .

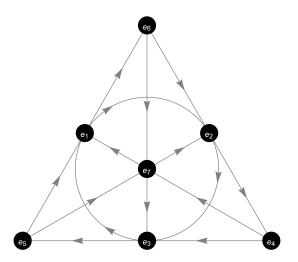
$$e_A e_B = -\delta_{AB} + \eta_{ABC} e_C$$
, $(A = 1, ..., 7)$. (24)

• Structure constants η_{ABC} (don't satisfy Jacobi):

$$\eta_{ABC} = 1 \Leftrightarrow (ABC) = (123), (516), (624), (435), (471), (572), (673)$$
.

Fano plane of octonions

Useful mnemonic for multiplication rule: Fano plane



Relation with R-flux algebra

- Let i = 1, 2, 3 and consider e_i , $f_i = e_{i+3}$, e_7 .
- Associator $[X, Y, Z] = (XY)Z X(YZ) = \frac{1}{3}[X, [Y, Z]] + \dots$

$$[e_{i}, e_{j}] = 2\epsilon_{ijk}e_{k}, [e_{7}, e_{i}] = 2f_{i},$$

$$[f_{i}, f_{j}] = -2\epsilon_{ijk}e_{k}, [e_{7}, f_{i}] = -2e_{i},$$

$$[e_{i}, f_{j}] = 2\delta_{ij}e_{7} - 2\epsilon_{ijk}f_{k},$$

$$[e_{i}, e_{j}, f_{k}] = 4\epsilon_{ijk}e_{7} - 8\delta_{k[i}f_{j]},$$

$$[e_{i}, f_{j}, f_{k}] = -8\delta_{i[j}e_{k]},$$

$$[f_{i}, f_{j}, f_{k}] = -4\epsilon_{ijk}e_{7},$$

$$[e_{i}, e_{j}, e_{7}] = -4\epsilon_{ijk}f_{k},$$

$$[e_{i}, f_{j}, e_{7}] = 4\epsilon_{ijk}f_{k}.$$

$$[f_{i}, f_{j}, e_{7}] = 4\epsilon_{ijk}f_{k}.$$

Contraction to R-flux algebra

Consider the contraction:

$$p_i = -\frac{1}{2}i\lambda e_i$$
 $x^i = i\lambda^{1/2}\frac{\sqrt{N}}{2}f_i$ $I = i\lambda^{3/2}\frac{\sqrt{N}}{2}e_7$. (26)

• For $\lambda \to 0$ we get

$$[f_{i}, f_{j}] = -2\epsilon_{ijk}e_{k} \Rightarrow [x^{i}, x^{j}] = iN\epsilon^{ijk}p_{k},$$

$$[e_{i}, e_{j}] = 2\epsilon_{ijk}e_{k} \Rightarrow [p_{i}, p_{j}] = 0$$

$$[f_{i}, e_{j}] = -\delta^{i}_{j}e_{7} + \epsilon_{ijk}f_{k} \Rightarrow [x^{i}, p_{j}] = i\delta^{i}_{j}I,$$

$$[x_{i}, I] = [p_{i}, I] = 0,$$

$$[f_{i}, f_{j}, f_{k}] = -4\epsilon_{ijk}e_{7} \Rightarrow [x^{i}, x^{j}, x^{k}] = N\epsilon^{ijk}I.$$

$$(27)$$

This gives exactly the *R*-flux algebra! $R^{ijk} = Ne^{ijk}$ What about the uncontracted algebra?

M-theory non-associativity

- Conjecture: Uncontracted algebra is lift of R-flux algebra to M-theory.
- e_7 is 4th coordinate: $X^{\alpha} \sim (f_1, f_2, f_3, e_7)$, $(\alpha = 1, \dots, 4)$.
- But only three momenta $P_i \sim (e_1, e_2, e_3)$, $(i = 1, \dots, 3)$.
- Seven-dimensional phase-space.
- We can see this from duality arguments!

Homology of twisted torus

- Recall: twisted torus $\tilde{T}^3 \times S^1 \longleftrightarrow R$ -flux background.
- U-duality: wrapping modes \longleftrightarrow momenta.
- $H_2(\tilde{T}^3, \mathbb{Z}) = \mathbb{Z}^2 \Rightarrow$ "missing 2-cycle".
- Result follows immediately because $[c_1] \in H_2(T^2, \mathbb{Z})$ trivial in total space, \tilde{T}^3 : $[c_1] = 0 \in H_2(\tilde{T}^3, \mathbb{Z})$.
- Or via deRham cohomology. Globally well-defined 1-forms:

$$\eta^1 = dx^1 - Nx^3 dx^2$$
, $\eta^2 = dx^2$, $\eta^3 = dx^3$. (28)

- $d\eta^2=d\eta^3=0$ but $d\eta^1=f_{23}^1\eta^2\wedge\eta^3=N\eta^2\wedge\eta^3\neq0.$
- $\bullet \Rightarrow H^1_{dR}(\tilde{T}^3) = H_2(\tilde{T}^3, \mathbb{R}) = \mathbb{R}^2.$
- \tilde{T}^3 is orientable $\Rightarrow H_2$ has no torsion and $H_2(\tilde{T}^3, \mathbb{Z}) = \mathbb{Z}_2$.
- ullet "Missing 2-cycle" \Rightarrow "missing momentum" after duality.

Missing momentum mode from twisted torus

- Recall: duality along x^2 , x^3 , x^4 .
- Under duality we had

$$x^2 \longleftrightarrow \tilde{x}_{34}, \quad x^3 \longleftrightarrow -\tilde{x}_{24}, \quad x^4 \longleftrightarrow \tilde{x}_{23}.$$
 (29)

Momenta and winding modes interchanged:

$$W^{34} \longleftrightarrow P_2, \qquad W^{24} \longleftrightarrow -P_1, \qquad W^{23} \longleftrightarrow P_4.$$
 (30)

- But $H_2(\tilde{T}^3, \mathbb{Z}) = \mathbb{Z}^2 \Rightarrow w^{23}$ does not exist \Rightarrow no P_4 in M-theory locally non-geometric background.
- M-theory \leftrightarrow IIA duality: M-theory circle $X^4 \Rightarrow$ no $P_4 \Rightarrow$ no D0-branes in R-flux background.
- There are no point-particles (recall point-particle approximation fails)!

... from Freed-Witten anomaly cancellation condition

- Consider T^3 with H-flux: $H_3(T^3, \mathbb{Z}) \ni [H_3] \neq 0$.
- Freed-Witten anomaly: $[H_3] = 0$ on D-brane.
- \Rightarrow No D3-branes wrapping T^3 with H-flux.
- Three T-dualities along $T^3 \Rightarrow \text{No } D0\text{-branes on } R\text{-flux background.}$
- Lift to M-theory \Rightarrow no P_4 along M-theory circle!
- We conjecture covariant generalisation: $R^{\alpha,\beta\gamma\delta\rho}P_{\alpha}=0.\Rightarrow$ constraint on phase-space.

M-theory R-flux algebra

- We have $R^{4,1234} = N$ so $R^{\alpha,\beta\gamma\delta\rho}P_{\alpha} = 0 \Rightarrow P_{4} = 0$.
- 7-dimensional phase-space: coordinates X^{α} , momenta P_i $(\alpha = 1, ..., 4, i = 1, ..., 3)$.
- Identify with imaginary units of octonions

$$X^{i} = \frac{\sqrt{N}}{2}il_{s}^{3/2}\lambda^{1/2}f_{i}, \qquad X^{4} = \frac{\sqrt{N}}{2}il_{s}^{3/2}\lambda^{3/2}e_{7}, \qquad P^{i} = -\frac{1}{2}i\hbar\lambda e_{i}.$$

$$(31)$$

- Conjecture: Octonion algebra = M-theory R-flux algebra
- ullet BUT: algebra cannot be $\mathrm{GL}(4)$ invariant: no 3-dim representation of GL(4).
- Algebra has SO(4) invariance: $X^{\alpha} \in (2,2)$, $P^{i} \in (1,3)$ of $SU(2) \times SU(2)$.

M-theory R-flux algebra

Conjecture: Octonion algebra = M-theory R-flux algebra

$$[P_{i}, P_{j}] = -i\lambda\hbar\epsilon_{ijk}P^{k}, \qquad [X^{4}, P_{i}] = i\lambda^{2}\hbar X_{i},$$

$$[X^{i}, X^{j}] = \frac{il_{s}^{3}}{\hbar}R^{4,ijk4}P_{k}, \qquad [X^{4}, X^{i}] = \frac{i\lambda l_{s}^{3}}{\hbar}R^{4,1234}P^{i},$$

$$[X^{i}, P_{j}] = i\hbar\delta_{j}^{i}X^{4} + i\lambda\hbar\epsilon_{jk}^{i}X^{k},$$

$$[X^{\alpha}, X^{\beta}, X^{\gamma}] = l_{s}^{3}R^{4,\alpha\beta\gamma\delta}X_{\delta},$$

$$[P_{i}, X^{j}, X^{k}] = 2\lambda l_{s}^{3}R^{4,1234}\delta_{i}^{[j}P^{k]},$$

$$[P^{i}, X^{j}, X^{4}] = \lambda^{2}l_{s}^{3}R^{4,ijk4}P_{k},$$

$$[P_{i}, P_{j}, X_{k}] = -\lambda^{2}\hbar^{2}\epsilon_{ijk}X^{4} + 2\lambda\hbar^{2}\delta_{k[i}X_{j]},$$

$$[P_{i}, P_{j}, X_{4}] = \lambda^{3}\hbar^{2}\epsilon_{ijk}X_{k},$$

$$[P_{i}, P_{i}, P_{k}] = 0.$$
(32)

- $\lambda \to 0 \Rightarrow$ string *R*-flux algebra
- Natural identification: $\lambda \sim g_s \sim R_4/I_s$
- $\lambda \to 1$ as $g_s \to \infty$.

Summary

- M-theory non-geometric backgrounds.
- Closed-string non-associativity via non-geometry.
- Contraction of octonions gives R-flux algebra.
- M-theory R-flux background: phase-space constrained $R^{\alpha,\beta\gamma\delta\rho}P_{\alpha}=0$.
- Conjecture: octonions give M-theory lift of *R*-flux algebra.
- Solving constraint breaks GL(4).

Outlook

- Can we impose constraint $R^{\alpha,\beta\gamma\delta\rho}P_{\alpha}=0$ "covariantly" via Nambu-Dirac bracket? First-class, second-class?
- Does this explain odd-dimensional phase space?
- Derivation of $R^{\alpha,\beta\gamma\delta}P_{\alpha}=0$ from duality-invariant membrane model? [Berman, Cederwall, EM arXiv:16xx.xxxx].
- "Higher"-dimensional EFT? S-dual fluxes in IIB?
- What can we learn about M-theory by requiring vanishing non-associativity?