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A brief review of T-duality

String theory is a theory of extended objects.
String theorists like compact spaces.
Strings on compact spaces

can have momentum along compact directions

can wind compact directions (unlike point particles)

String theory is invariant under exchange of momentum and winding.

This is known as T-duality.
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T-duality changes the radius of the compact direction, e.g. small circle
and big circle (and swaps IIA and IIB).

10-D SUGRA background transforms according to Buscher rules.

Simplest example: massless NS-NS fields (common bosonic sector of type
IIA and IIB), g(µν),B[µν], φ.
Buscher rules for T-duality along y are

gyy → 1
gyy

, Byi → −
gyi
gyy

,

giy →
Byi

gyy
, Bij → Bij −

gyiByj−gyjByi

gyy
,

gij → gij −
giygjy−BiyBjy

gyy
, φ→ φ− 1

2 ln |gyy | .

(1)
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T-duality: Key points

String spectrum & partition function remains invariant under
T-duality.

Compactified string (SUGRA) solutions are mapped into each other
under T-duality.

T-dualities form a symmetry of SUGRA actions which is hidden in
standard formulation.

These symmetries form the group O(D,D) for D commuting Killing
vectors.

T-duality is inherently stringy: arises from extended nature of string.
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Some questions

Why do these groups appear and do they have a fundamental role in string
theory (M-theory)?

What is the role of isometries?

What can we learn about string theory / SUGRA?

Can we get viable phenomenological string models?
e.g. deSitter / inflation, moduli stabilisation
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A brief look at non-geometry

Toy model.

a) Consider flat T 3 with H = dB flux:

ds2 = dx2 + dy2 + dz2 , Byz = Nx . (2)

b) T-duality along y gives twisted torus :

ds2 = dx2 + dy2 + (dz + Nxdy)2 . Byz = 0 . (3)

As x → x + 2π, z → z − 2πNy .

c) A further T-duality along z gives non-geometry:

ds2 =
1

1 + N2x2

(
dz2 + dy2

)
+ dx2 , Byz =

Nx

1 + N2x2
. (4)

As x → x + 2π, metric and B-field are not periodic, even up to SL(2)
transformation.
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T-folds: patching with T-dualities

We can understand what is happening as follows. View T 3 as S1 × T 2

1.) As we go around the S1, x → x + 2π, we patch the B-field with a
gauge transformation: Byz → Byz − 2πN.

2.) As we go around the S1, we patch with a SL(2) transformation
z → z − 2πNy .

3.) As we go around the S1, we patch with a T-duality transformation.

T-duality acts on the patching: label patching transformation by ∆. Then
after T-duality, represented by O, ∆→ O−1∆O.

Such backgrounds are called T-folds. Duality is a symmetry of string
theory ⇒ acceptable patching.

What is the low-energy dynamics of these backgrounds?
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Enter double field theory

T-duality mixes g and B and momentum and winding.

To make T-duality manifest, we need to combine g and B and promote
winding to same role as momentum.

Add D coordinates x̃µ to represent winding: XA =

(
xµ

x̃µ

)
. “String moving

on large and small circle.”

Combine metric and Kalb-Ramond form into an O(D,D) element so it
transforms as a tensor under O(D,D): generalised metric

MAB =

(
gµν − Bµρg

ρκBκν −Bµρgρν
gµρBρν gµν

)
. (5)

µ, ν = 1, . . .D are spacetime indices.
A,B = 1, . . . 2D are O(D,D) indices.
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Conservatives and optimists

S = S10−D + SD . (7)

Conservatively: S10−D is our low-energy dynamics (D = 6). SD is compact
and described by DFT. It describes the scalar potential of the
compactification.

Optimistic: We will see that allowing extra coordinates means we don’t
need isometries / compactifications. We can make D = 10 and describe
all directions by DFT.
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We should understand the situation ∂̃µ = 0. Then generalised tensors live
in TM ⊕ T ∗M and this is the realm of “generalised geometry”.
(Hitchin, Gualtieri, . . . , Waldram, . . . )

Different ways to see this is needed:

TM ⊕ T ∗M has a natural action of O(D,D).
For v ,w ∈ TM, ξ, ρ ∈ T ∗M 〈v + ξ|w + ρ〉 = ξ(w) + ρ(v).
The O(D,D) metric 〈 | 〉 is denoted by

ηAB =

(
0 I
I 0

)
. (8)

Metric + 2-form have diffeo + gauge symmetry.
Diffeomorphisms are infinitesimally generated by vectors.
Gauge transformations are infinitesimally generated by one-forms.

DFT is an “O(D,D)-covariantisation” of this by including winding
coordinates x̃µ. This will give us an action.
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Generalised metric satisfies

MACη
CDMDB = ηAB , (9)

and is unit determinant.

We need another object to have a volume element. This is the generalised
dilaton d , an O(D,D) scalar

e−2d =
√
ge−2φ , (10)

where φ is string theory dilaton.
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Generalised diffeomorphisms

Recall: diffeomorphisms and gauge transformations are generated by a
vector ξµ + covector λµ = generalised vector UA = (ξµ, λµ).
Collective symmetries described by generalised Lie derivative

LUV A = UB∂BV
A − V B∂BU

A + ηABV CηCD∂BU
D . (11)

For generalised metric, this gives exactly diffeo + gauge symmetry when
you set ∂̃µ = ∂

∂x̃µ
= 0.

In GR, the algebra of diffeomorphisms closes:

[LU , LV ]W A = L[U,V ]W
A (12)

where [ , ] is the commutator and Lie bracket, and L the Lie derivative.

Emanuel Malek Double field theory and non-geometry 5th September 2014 18 / 45



Section condition

Does the algebra of generalised diffeomorphisms close?

NO!
[LU ,LV ]W A = L[U,V ]CW

A + junk (13)

YES! if one imposes the “section condition”

ηAB∂Af ∂Bg = 0 . (15)

for any two fields f , g in the theory. This is also “level-matching”
condition of string theory.

This condition restricts dependence of any field f (xµ, x̃µ) so that f
depends at most on D of the coordinates and never on xz and its dual x̃z
at the same time (z is a label for a specific index).

This is an O(D,D) covariantisation of the requirement ∂̃µ = 0.
Both ∂̃µ = 0 and ∂µ = 0 are solutions.
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The action

We can write a unique action in terms of O(D,D) tensors that is weakly a
scalar under generalised Lie derivative.

S =

∫
dxdx̃ e−2d

(
1

8
MAB∂AM

CD∂BMCD −
1

2
MAB∂AM

CD∂CMBD

+4MAB∂A∂Bd − ∂A∂BMAB − 4MAB∂Ad∂Bd + 4∂AM
AB∂Bd

)
.

(17)

LUS ≈ 0 . (19)
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The action
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A bit of magic

If we now consider the solution of the section condition ∂̃µ = 0 we get

S =

∫
dx e−2φ√g

(
R − 1

12
HµνρH

µνρ − 4∇µφ∇µφ+ 4�φ

)
, (20)

where H = dB and R is the Ricci scalar. All indices raised / lowered with
gµν . This is the action for the NS-NS sector we are considering.
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Non-geometry and fluxes

We recall the toy model T 3 = S1 × T 2:

H-flux → twisted torus (“geometric flux”) → “non-geometric flux”.

Each arrow is a T-duality.

We said that T-duality transforms the patching. Explicitly in DFT:

MAB(x + 2π)→ ∆TMAB(x)∆ , (21)

where ∆ ∈ O(2, 2) corresponds to the different patchings (B-field, SL(2),
T-duality).
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1. The H-flux:

(∆1)A B =

(
δµν 0
δBµν δµ

ν

)
, (22)

where δBxy = −2πN is the gauge transformation patching.

2. The “geometric flux”:

(∆2)A B =

(
Aµν 0

0
(
A−T

)
µ
ν

)
, (23)

where Aµ
ν is the SL(2) transformation patching.

3. The “non-geometric flux”:

(∆3)A B =

(
δµν δβµν

0 δµ
ν

)
, (24)

where βyz = −2πN.

O12 is the generator of the T-duality going between 1 and 2,
∆2 = (O12)−1 ∆1 O12, etc.
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Choice of frame

The first two patchings, ∆1, ∆2, look natural in terms of gµν ,Bµν : they
are just diffeos + gauge transformations.

Since T-duality is a symmetry of strings, how can we see ∆3 as being
natural?

Define generalised vielbeine:

MAB = EA
iEB

jδij (25)

Because of Mη−1M = η, the vielbeine satisfy

ηAB = EA
iEB

jηij . (26)

Therefore, local O(D)×O(D) can act on the i , j flat indices and preserve
these defining equations.
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Choice of frame

The parameterisation

MAB =

(
gµν − BµρB

ρ
ν Bµ

ν

−Bµν gµν

)
(27)

corresponds to the choice of vielbein

EA
i =

(
e 0
eB e−T

)
, (28)

where eT e = g . However, an equivalent choice, related by an
O(D)×O(D) transformation gives

EA
i =

(
ẽ βẽ
0 ẽ−T

)
, (29)

where βµν is a “bivector” and ẽ is in principle different from e.
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We see that double field theory contains in general new fields in the
“supergravity”!

These appear on the same footing as the usual gµν , Bµν fields.

The DFT action, being written in terms of MAB , describes the dynamics
of these fields.

Can these new fields play a role in understanding non-geometry?
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The generalised Lie derivative tells us how these fields transform under
gauge transformations. These expressions look nice in the section ∂µ = 0,
e.g.

δUβ
µν = Uρ∂̃

ρβµν + βκν ∂̃µUκ + βµκ∂̃νUκ + 3∂̃[µUν] . (30)

This is just the gauge transformation laws for Bµν with all indices reversed.

Under

∆3 =

(
1 δβ
0 1

)
, (31)

we just have βµν → βµν + δβµν . Thus, this frame is a natural choice for 3:

ds̃2 = dx2 + dy2 + dz2 , βyz = Nx . (32)

We see that this is the reverse of the H-flux example (1).
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Fluxes: geometric and non-geometric

What is the analogous “field strength” to H? It is

Qνρ
µ = ∂µβ

νρ . (33)

The different fluxes are all contained in the “generalised torsion”:

(LEi
Ej)

A = τABCE
B
iE

C
j . (34)

This is not O(D)×O(D) invariant! In the usual frame

E =

(
e 0
eB e−T

)
, (35)

we find the “geometric fluxes”

τµνρ ∼ Tµ
νρ , τµνρ ∼ Hµνρ ,

τµν
ρ = 0 , τµνρ = 0 .

(36)

where T ∼ [e, e].
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In the “reversed” frame with β

E =

(
e βe−T

0 e−T

)
, (37)

we have instead

τµνρ = 0 ,

τµνρ = 0 ,

τµ
νρ ∼ Qνρ

µ ,

τµνρ ∼ Rµνρ ,

(38)

where Rµνρ = ∂̃[µβνρ].
When talking about fluxes we need to make sure they are globally
well-defined. Consider the toy model:

In the third scenario with the T-duality patching, neither Tµ
νρ nor Hµνρ

are well-defined when going around x → x + 2π. But, in the “reversed”
frame, Qyz

x is globally well-defined. Thus, “reversed frame” is preferred!
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We have found a new object Rµνρ = ∂̃[µβνρ]. What is it?

Recall the toy model. Calculating the fluxes in a frame so that they are
globally well-defined, we find each T-duality raised an index on the flux:

Hyzx → T y
zx → Qyz

x . (39)

We have run out of directions to T-dualise to get Rµνρ. However, in DFT
we can T-dualise along non-isometries and get the final step.

Qyz
x → Ryzx . (40)

This solution explicitly involves the dual coordinates x̃ .
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This chain of dualities involved fully geometric backgrounds as well as
non-geometric ones.

Can we find “fully non-geometric” backgrounds where T-duality does not
give a geometric background?

We have “geometrical” objects τABC that in some frames capture the
fluxes of these backgrounds.

What is the “characteristic class” that picks up the patching?
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What next?

DFT describes the low-energy dynamics of all the fluxes, including
“non-geometric” Q and R.

We can describe them geometrically.

These non-geometric fluxes are important in providing a
higher-dimensional origin for all gauged supergravities (some were
previously orphaned).

Non-geometric compactifications could give interesting scalar
potentials, e.g. moduli stabilisation, deSitter, inflation?

What sources these non-geometric fluxes? Exotic branes?

Relax section condition and move beyond SUGRA. More than a
rewriting.

M-theory and U-duality.
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Geometry

The action of DFT is a great success: it is manifestly T-duality invariant,
it is weakly a generalised scalar and it reproduces the right SUGRA action
in the right duality frame.

S ∼
∫

dxdx̃ (∂M)2 . (41)

However, it is not manifestly geometric: the terms are not tensors under
generalised diffeomorphisms.

Recall: L 6= L. Generalised diffeomorphisms are not just “doubled”
diffeomorphisms!

We need to find new tensors. Analogues of Levi-civita connection fail (and
curvature objects analogous to Rimenann curvature cannot be defined in
M-theory extension!)
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Curvature-less but torsionful connections

However, one can use a flat connection

ΓA
BC = EA

i∂BEC
i . (42)

This has vanishing curvature but non-zero torsion: τABC .(
L∇U − L∂U

)
V a = τABCU

BV C . (43)

This is the same as the equation for τABC given before. This is the τ
which contains all the fluxes.

We can write down a “teleparallel” action in terms of this torsion

S ∼
∫

dxdx̃ (τ)2 . (44)
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Note that neither the connection

ΓA
BC = EA

i∂BEC
i , (45)

nor the torsion τABC are O(D)×O(D) invariant! We construct the action
by requiring this local invariance at the level of the action.

S ∼
∫

dxdx̃ τ2 (46)

is for obvious reasons also known as “flux formalism” of DFT.
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Scalar potential

If we compactify D dimensions, thanks to DFT, we now have the scalar
potential in terms of “geometric” and “non-geometric” fluxes.

How can we turn the fluxes on?

Tori don’t work because the fluxes will “push” the tori. Need to use
Scherk-Schwarz compactification.
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Scherk-Schwarz

Let X = (X,Y) and consider a dimensional reduction such that

V A (X,Y) = W A
b (Y) V̂ b (X) , W A

b ∈ O(D,D) , (47)

and similarly for all other tensors. This gives a gauged supergravity, with
the twists W entering in the action only in the combinations of

f abc = 3ηaeηd [eW
A
bW

B
c]∂A

(
W−1

)d
B . (48)

These will be the structure constants of your gauged group.

In fact, they are related to the reduced torsion components τABC :

τABC (X,Y) = W A
a

(
W−1

)
B

b
(
W−1

)
C

c (τ̂ abc (X) + f abc) , (49)

where τ̂ abc is defined analogously to τABC in terms of hatted quantities.
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Gauged SUGRA reductions

If we do a Scherk-Schwarz compactification on normal 10-D type II
SUGRA, we do not get all lower-dimensional gauged SUGRAs.

Some lower-dimensional GSUGRAs can be obtained by directly gauging
lower-dimensional SUGRAs.

All such gauged SUGRAs can be classified by the “embedding tensor”
θabc : how the gauged subgroup embeds in the O(D,D) group.

Group theory shows that θabc and f abc agree. But some f abc components
are set to zero through this reduction. Why does this happen and how can
we remedy this?

IS STRING THEORY NOT THE SOURCE OF EVERYTHING???
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Beyond supergravity

The section condition ηAB∂A ⊗ ∂B ≈ 0 means we are really only ever
dealing with D dimensions.

So far everything is but a rewriting of supergravity actions! So the same
facts are still true for GSUGRAs.

We can go beyond SUGRA. ηAB∂A ⊗ ∂B ≈ 0 is sufficient but not
necessary for consistency of theory.

A more relaxed condition can be used.

Emanuel Malek Double field theory and non-geometry 5th September 2014 43 / 45



A new look at Scherk-Schwarz compactifications

All consistency requirements (closure of algebra, invariance of action under
generalised diffeomorphisms, . . .) can now be satisfied by:

ηab∂aĝ (X) ∂bĥ (X) ≈ 0 ,

ηab∂aW ∂bĝ (X) ≈ 0 ,
(50)

and Jacobi identity
f e [abf

f
c]d = 0 . (51)

We do not impose
ηAB∂AW ∂BW 6= 0 . (52)

Thus, we do not impose the full section condition.
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Non-geometry again

These relaxed compactifications contain some dependence on winding
coordinates x̃µ.

This is the final ingredient to get the remaining gauged SUGRAs!

These other gauged SUGRAs have non-geometric fluxes turned on in the
scalar potential.

Thus, DFT provides a higher-dimensional origin for these previously
orphaned SUGRAs.
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