Double field theory and non-geometry Part II: M-theory and timelike dualities

Emanuel Malek

The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town

12th September 2014

Outline

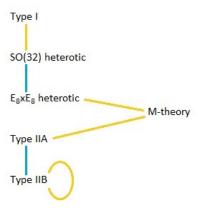
- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Web of dualities

String theory has perturbative T-duality and also a non-perturbative S-duality (strong-weak).



T- and S-duality relate different string theories on disparate backgrounds.

These dualities have played a key role in understanding string theory: D-branes, flux vacua, etc.

For example, the 5 superstring theories are seen as different corners of an underlying "M-theory".

Low-energy theory of M-theory is 11-D SUGRA: biggest SUGRA theory. M-theory seen as mother of all theories.

T + S = U-duality arises when compactifying 11-D SUGRA on T^n .

n	En	H_n
3	$SL(2) \times SL(3)$	$SO(2) \times SO(3)$
4	SL(5)	SO(5)
5	SO(5,5)	$SO(5) \times SO(5)$
6	E_6	USp(8)
7	E ₇	SU(8)
8	E ₈	SO(16)

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Review of DFT

Winding coordinates \tilde{x} are introduced: $X^A = \begin{pmatrix} x^\mu \\ \tilde{x}_\mu \end{pmatrix}$.

Bosonic fields (of NS-NS sector) are unified in generalised metric

$$M_{AB} = \begin{pmatrix} g_{\mu\nu} - B_{\mu\rho} g^{\rho\kappa} B_{\kappa\nu} & -B_{\mu\rho} g^{\rho\nu} \\ g^{\mu\rho} B_{\rho\nu} & g^{\mu\nu} \end{pmatrix} , \qquad (1)$$

and generalised dilaton e^{-2d} .

Gauge transformations are unified in generalised Lie derivative

$$\mathcal{L}_U V^A = U^B \partial_B V^A - V^B \partial_B U^A + \eta^{AB} \eta_{CD} V^C \partial_B U^D.$$
 (2)

Supergravity action $S \sim \int \left(R - H^2 + \nabla^2 \phi\right)$ is rewritten as

$$S \sim \int dx d\tilde{x} \left(\partial M\right)^2$$
 (3)

Non-geometric frame

Recall that for the non-geometric string background

$$ds^{2} = \frac{1}{1 + N^{2}x^{2}} (dy^{2} + dz^{2}) + dx^{2},$$

$$B_{yz} = \frac{Nx}{1 + N^{2}x^{2}},$$
(4)

the generalised metric in the frame

$$M_{AB} = \begin{pmatrix} \tilde{\mathbf{g}}_{\mu\nu} & \tilde{\mathbf{g}}_{\mu\rho}\beta^{\rho\nu} \\ -\beta^{\mu\rho}\tilde{\mathbf{g}}_{\rho\nu} & \tilde{\mathbf{g}}^{\mu\nu} - \beta^{\mu\rho}\tilde{\mathbf{g}}_{\rho\kappa}\beta^{\kappa\nu} \end{pmatrix}, \tag{5}$$

is more natural. The fields

$$d\tilde{s}^2 = dx^2 + dy^2 + dz^2,$$

$$\beta^{yz} = Nx,$$
(6)

are periodic up to gauge transformations (the field strength Q^{yz}_{x} is periodic).

Extended field theory: DFT for M-theory

How to extend this treatment to U-duality of 11-D SUGRA? I will focus on truncation on \mathcal{T}^4 case for simplicity: $\mathrm{SL}(5)$ U-duality group.

Consider a T^4 . The M2-brane could wrap it in $\binom{4}{2} = 6$ different ways. Therefore, include 6 wrapping coordinates $y_{\mu\nu}$.

The 10 generalised coordinates lie in the antisymmetric rep of SL(5), i.e. for a, b = 1, ..., 5

$$X^{[ab]} = \begin{cases} X^{\alpha 5} = x^{\alpha} \\ X^{\alpha \beta} = \frac{1}{2} \eta^{\alpha \beta \gamma \delta} y_{\gamma \delta} \end{cases}, \tag{7}$$

where $\alpha, \beta = 1, \dots$ 4 and $\eta^{\alpha\beta\gamma\delta}$ is the 4-D alternating symbol (no det g).

Generalised metric and Lie derivative

In DFT, the generalised metric and dilaton parameterised the coset space.

$$M_{AB}e^{-2d} \in \frac{\mathrm{O}(\mathrm{D},\mathrm{D})}{\mathrm{O}(\mathrm{D}) \times \mathrm{O}(\mathrm{D})} \times \mathbb{R}^{+}$$
 (8)

Now, we want to parameterise the coset space

$$m_{ab} \in \frac{\mathrm{SL}(5)}{\mathrm{SO}(5)} \times \mathbb{R}^+ \,.$$
 (9)

For DFT, the generalised Lie derivative preserves the O(D,D) structure η_{AB}

$$\mathcal{L}_{\xi}\eta_{AB}=0. \tag{10}$$

Here, we need to preserve the SL(5) group invariant ϵ_{abcde} , the alternating tensor. We find

$$\mathcal{L}_{\xi}V^{a} = \frac{1}{2}\xi^{bc}\partial_{bc}V^{a} + \frac{1}{4}V^{a}\partial_{bc}\xi^{bc} - V^{b}\partial_{bc}\xi^{ac}. \tag{11}$$

Section condition

Closure of algebra of generalised Lie derivatives

$$[\mathcal{L}_{\xi}, \mathcal{L}_{\chi}] V^{a} = \mathcal{L}_{[\xi, \chi]} V^{a} + \text{junk}$$
(12)

⇒ "section condition" to kill junk

$$\partial_{[ab}\partial_{cd]}\Phi(X) = 0, \quad \partial_{[ab}\Phi(X)\partial_{cd]}\Phi'(X) = 0,$$
 (13)

for all fields $\Phi(X), \Phi'(X)$ of the theory.

Conventional solution of the section condition as before comes from 4+1 split:

$$X^{\alpha 5} \equiv x^{\alpha}$$
, where $\alpha, \beta = 1, \dots, 4$, i.e. $\partial_{\alpha 5} \Phi \neq 0$, $\partial_{\alpha \beta} \Phi = 0$.

A generalised vector

$$\xi^{ab} \to \begin{cases}
\xi^{\alpha 5} = w^{\alpha} & \text{vector} \\
\xi^{\alpha \beta} = \frac{1}{2} \eta^{\alpha \beta \gamma \delta} \lambda_{\gamma \delta} & \text{two-form}
\end{cases}$$
(14)

Will generate diffeos + 3-form gauge transformations.

The action

The action can be found by requiring invariance under generalised Lie derivatives modulo section condition.

$$S = \int_{\Sigma} |m|^{-1} \left(-\frac{1}{8} m^{ab} m^{a'b'} \partial_{aa'} m^{cd} \partial_{bb'} m_{cd} + \frac{1}{2} m^{ab} m^{a'b'} \partial_{aa'} m^{cd} \partial_{cb'} m_{bd} \right.$$

$$\left. + \frac{1}{2} \partial_{aa'} m^{ab} \partial_{bb'} m^{a'b'} + \frac{3}{8} m^{ab} m^{a'b'} \partial_{aa'} \ln |m| \partial_{bb'} \ln |m| \right.$$

$$\left. - 2m^{a'b'} \partial_{aa'} m^{ab} \partial_{bb'} \ln |m| + m^{a'b'} \partial_{aa'} \partial_{bb'} m^{ab} - m^{ab} m^{a'b'} \partial_{aa'} \partial_{bb'} \ln |m| \right)$$

$$(15)$$

where $|m| = |\det m_{ab}|$ and Σ is lower-dimensional section satisfying the section condition.

Parameterising the generalised metric

Going to 4+1 split, 5×5 symmetric m_{ab} gives

- 4 \times 4 symmetric $g_{\alpha\beta}$ (spacetime metric),
- vector $v^{\alpha}=\frac{1}{3!}\epsilon^{\alpha\beta\gamma\rho}C_{\beta\gamma\rho}$ (3-form),
- scalar ϕ (related to truncation from 11-D).

Generalised Lie derivative gives natural parameterisation

$$m_{ab} = \begin{pmatrix} \frac{g_{\alpha\beta}}{\sqrt{|g|}} & v_{\alpha} \\ v_{\beta} & \sqrt{|g|} \left(e^{\phi} + v^{\alpha} v_{\alpha} \right) \end{pmatrix} . \tag{16}$$

The generalised Lie derivative acts on m_{ab} as

$$\mathcal{L}_{\xi} m_{ab} = \frac{1}{2} \xi^{cd} \partial_{cd} m_{ab} - \frac{1}{2} m_{ab} \partial_{cd} \xi^{cd} + m_{cb} \partial_{ad} \xi^{cd} + m_{ac} \partial_{bd} \xi^{cd} . \quad (17)$$

$$\mathcal{L}_{\xi} m_{ab} = \frac{1}{2} \xi^{cd} \partial_{cd} m_{ab} - \frac{1}{2} m_{ab} \partial_{cd} \xi^{cd} + m_{cb} \partial_{ad} \xi^{cd} + m_{ac} \partial_{bd} \xi^{cd} . \tag{18}$$

Split $\xi^{ab}=\left(\xi^{\alpha 5}=w^{\alpha},\ \xi^{\alpha \beta}=\frac{1}{2}\eta^{\alpha \beta \gamma \delta}\lambda_{\gamma \delta}\right)$.

The generalised Lie derivative implies the transformations

$$\delta g_{\alpha\beta} = L_w g_{\alpha\beta} ,$$

$$\delta C_{\alpha\beta\gamma} = L_w C_{\alpha\beta\gamma} + 3\partial_{[\alpha} \lambda_{\beta\gamma]} ,$$

$$\delta \phi = L_w \phi .$$
(19)

Here L is the standard 4-D Lie derivative.

Thus w^{α} generates 4-D diffeomorphisms and $\lambda_{\alpha\beta}$ generates gauge transformations of the three-form potential $C_{\alpha\beta\gamma}$.

The 4-D action

Using the section, $\partial_{\alpha\beta}=0$, and parameterisation of m_{ab} , the action becomes

$$S = -\int d^4x \ e^{2\phi} \sqrt{|g|} \left(R - \frac{1}{48} e^{-\phi} F_{\alpha\beta\gamma\delta} F^{\alpha\beta\gamma\delta} + \frac{5}{2} \partial^{\alpha} \phi \partial_{\alpha} \phi \right) \ . \tag{20}$$

- $g_{\alpha\beta}$ metric
- R Ricci scalar of $g_{\alpha\beta}$.
- $F_{\alpha\beta\gamma\delta} = 4\partial_{[\alpha}C_{\beta\gamma\delta]}$ field strength of $C_{\alpha\beta\gamma}$.

Consider truncating bosonic part of 11-dimensional supergravity to n-dimensions:

- $\bullet \ g_{11}=g_n\otimes e^{\varphi}\hat{g}_{11-n}$
- $|\det \hat{g}_{11-n}| = 1$
- cpts of 3-form only non-zero in the *n* directions

Integrating by parts gives

$$\sqrt{g_{11}} R_{11} \sim e^{(11-n)\varphi/2} \sqrt{g} \left(R_n + \frac{(11-n)(10-n)}{4} g^{\alpha\beta} \partial_{\alpha} \varphi \partial_{\beta} \varphi \right).$$
 (21)

so 4-D truncation is

$$S = -\int d^4x \ e^{7\varphi/2} \sqrt{|h|} \left(R_h - \frac{1}{48} F_{\alpha\beta\gamma\delta} F^{\alpha\beta\gamma\delta} + \frac{21}{2} \partial^{\alpha} \varphi \partial_{\alpha} \varphi \right) . \quad (22)$$

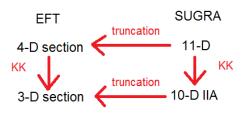
Equivalent to previous action under conformal rescaling

$$h_{\alpha\beta} = g_{\alpha\beta}e^{-\phi/2}, \qquad u^{\alpha} \equiv h^{\alpha\beta}u_{\beta} = v^{\alpha}e^{\phi}, \qquad \varphi = -\frac{2}{3}\phi.$$
 (23)

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

3-D truncation of IIA



Obtain a 3-D truncation of IIA by dimensional reduction of the above solution, i.e.

$$\partial_{\mu 4} = \partial_{45} = \partial_{\mu \nu} = 0, \partial_{\mu 5} \neq 0,$$
 $\mu, \nu = 1, 2, 3.$ (24)

- Here 4 and 5 are treated differently.
- Can we find a 3-D section where 4 ,5 treated equally \Rightarrow S-duality \Rightarrow IIB?

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

3-D truncation of IIB

Section condition $\partial_{[ab}\partial_{cd]}\Phi=0$ also satisfied by 3-D section $X^{\mu\nu},\ \mu,\nu=1,2,3$, i.e. $\partial_{\mu i}\Phi=\partial_{ij}\Phi=0$, $i\,,j=4\,,5$. This treats $i\,,j=4\,,5$ equally and has a $\mathrm{SL}(2)$ duality.

Define

$$\tilde{x}_{\mu} \equiv \frac{1}{2} \eta_{\mu\nu\rho} X^{\nu\rho} \,, \qquad \tilde{\partial}^{\mu} \equiv \frac{1}{2} \eta^{\mu\nu\rho} \partial_{\nu\rho} \,.$$
 (25)

 $\eta_{123} = \eta^{123} = 1$ is 3-D Levi-Civita tensor *density*.

Remaining 7 coordinates related to wrapping of branes in 3-D: IIB IIA

- $X^{\mu\nu} \rightarrow 3$ momenta of F1,
- $X^{\mu5} \rightarrow$ 3 wrappings of F1,
- $X^{\mu4} \rightarrow 3$ wrappings of D1,
- $X^{45} \rightarrow 1$ wrapping of D3.

- $X^{\mu5} \rightarrow 3$ momenta of F1,
- $X^{\mu\nu}
 ightarrow 3$ wrappings of F1,
- $X^{\mu4} \rightarrow$ 3 wrappings of D2,
- $X^{45} \rightarrow 1$ wrapping of D0.

Parameterising the generalised metric

Generalised Lie derivative gives different natural parameterisation

$$m_{ab} = \begin{pmatrix} \sqrt{|\tilde{g}|} \left(\tilde{g}_{\mu\nu} + e^{\tilde{\phi}} \tilde{v}^{k}{}_{\mu} \tilde{v}_{k\nu} \right) & e^{\tilde{\phi}} \tilde{v}_{j\mu} \\ e^{\tilde{\phi}} \tilde{v}_{i\nu} & \frac{1}{\sqrt{|\tilde{g}|}} e^{\tilde{\phi}} \tilde{\mathcal{M}}_{ij} \end{pmatrix} . \tag{26}$$

 5×5 symmetric m_{ab} gives

- 3×3 symmetric $\tilde{g}^{\mu\nu}$ spacetime metric, $|\tilde{g}| = |\det \tilde{g}^{\mu\nu}|$,
- ullet 2 vectors $\tilde{v}^i_{\ \mu}$,
- 3 scalars: $\tilde{\phi}$, symmetric 2 × 2 unit-det $\tilde{\mathcal{M}}_{ij}$.

KR and RR 2-forms: $C^{i\mu\nu} \equiv \epsilon^{\mu\nu\rho} \tilde{v}^i{}_{
ho}$, $\tilde{\epsilon}^{123} = |\tilde{g}|^{1/2}$,

RR 0-form $\tilde{C}^{(0)}$ and string dilaton $\tilde{\varphi}$ in

$$\tilde{\mathcal{M}}_{ij} = \frac{1}{\mathrm{Im}\tau} \begin{pmatrix} |\tau|^2 & \mathrm{Re}\tau \\ \mathrm{Re}\tau & 1 \end{pmatrix}, \quad \tau = C^{(0)} + ie^{-\tilde{\varphi}}.$$
 (27)

Extra scalar $\tilde{\phi}$ related to truncation from 10-D.

Gauge transformations

Generalised vector ξ^{ab} contains

- 3-D vector $\tilde{\xi}_{\mu} \equiv \frac{1}{2} \eta_{\mu\nu\rho} \xi^{\nu\rho}$,
- 2 \times 3-D 1-form $\lambda^{i\mu} \equiv \xi^{i\mu}$,
- 3-D scalar ξ^{ij} .

Generalised Lie derivative

$$\mathcal{L}_{\xi} m_{ab} = \frac{1}{2} \xi^{cd} \partial_{cd} m_{ab} - \frac{1}{2} m_{ab} \partial_{cd} \xi^{cd} + m_{cb} \partial_{ad} \xi^{cd} + m_{ac} \partial_{bd} \xi^{cd} , \quad (28)$$

shows how fields transform

$$\delta \tilde{\phi} = L_{\tilde{\xi}} \tilde{\phi} , \qquad \delta \tilde{\mathcal{M}}_{ij} = L_{\tilde{\xi}} \tilde{\mathcal{M}}_{ij} , \delta \tilde{C}^{i\mu\nu} = L_{\tilde{\xi}} \tilde{C}^{i\mu\nu} + 2\tilde{\partial}^{[\mu} \lambda^{|i|\nu]} , \quad \delta \tilde{g}^{\mu\nu} = L_{\tilde{\xi}} \tilde{g}^{\mu\nu} .$$
(29)

We defined

$$L_{\tilde{\xi}}V^{\mu} \equiv \tilde{\xi}_{\nu}\tilde{\partial}^{\nu}V^{\mu} + V^{\nu}\tilde{\partial}^{\mu}\tilde{\xi}_{\nu}, \qquad (30)$$

NB: ξ^{ij} drops out of Lie derivative (no gauge transformation of $C^{(0)}$).

IIB action

The action $S \sim \int_{\Sigma} dX |m|^{-1} \ (\partial m)$ reduces to

$$S = -\int \! d^3\tilde{x} \sqrt{|\tilde{g}|} e^{-2\tilde{\phi}} \left(\tilde{R} + \frac{1}{4} \tilde{\partial}^{\mu} \tilde{\mathcal{M}}^{ij} \tilde{\partial}_{\mu} \tilde{\mathcal{M}}_{ij} - \frac{1}{12} e^{\tilde{\phi}} \tilde{H}^{i\mu\nu\rho} \tilde{H}_{i\mu\nu\rho} + \frac{9}{2} \tilde{\partial}^{\mu} \tilde{\phi} \tilde{\partial}_{\mu} \tilde{\phi} \right)$$
(31)

- μ, ν indices raised/lowered by $\tilde{g}^{\mu\nu}$,
- i,j indices are raised/lowered by $\tilde{\mathcal{M}}_{ij} \Rightarrow$ manifestly $\mathrm{SL}(2)$ invariant,
- $\mathrm{SL}(2)$ doublet of field strengths $\tilde{H}^{i\mu\nu\rho}=3\tilde{\partial}^{[\mu}\tilde{C}^{|i|\nu\rho]}$,
- Riemann tensor \tilde{R} for $\tilde{g}^{\mu\nu}$ with "reversed indices".

This is truncated IIB action with "reversed indices"!

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Timelike dualities

What happens if we include time as part of the 4-D we are dualising along?

Coset space becomes $\frac{\mathrm{SL}(5)}{\mathrm{SO}(3,2)}$. (Hull, Julia arXiv/hep-th/9803239)

T-duality links IIA with IIB*, IIB with IIA*. These have RR fields with "wrong" sign for kinetic terms. (Hull arXiv/hep-th/9806146).

U-dualities change signature of spacetime: M \rightarrow M* \rightarrow M'. Their signatures are (10,1) \rightarrow (9,2) \rightarrow (6,5). (Hull arXiv/hep-th/9807127).

Hull and Khuri hep-th/9808069 also study brane solutions of these theories (and holography in funky spacetimes hep-th/9911082).

We can understand this as follows.

Start in 11-D and compactify on a circle: we get IIA in the limit $R_1 o 0$.

Compactify on another circle: we get IIB under T-duality in the limit $R_2 \to 0$. We have lost 2 directions $(R_1, R_2 \to 0)$ but gained a T-dual direction: $\frac{1}{R_2} \to \infty$.

Compactifying on T^3 and taking $R_1, R_2, R_3 \rightarrow 0$ gives back 11-D theory.

Now include time.

Start in 11-D and compactify on a $T^{(1,1)}$. You will lose 1 spacelike & 1 timelike direction and gain 1 timelike direction. Net loss: 1 spacelike direction.

Now consider a $T^{(1,2)}$ so you go from 11-D \to 11-D. This has $2 \times (1,1)$ cycles and $1 \times (0,2)$ cycle.

Thus, you lose 1 spacelike directions and gain 1 timelike direction. Signature is now (9,2).

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Lorentzian signature

Coset space is

$$m_{ab} \in \mathbb{R}^+ \times \frac{\mathrm{SL}(5)}{\mathrm{SO}(3,2)}$$
 (32)

 m_{ab} has signature (-, +, +, +, -). Choice of assigning negative directions gives different theories.

For M-theory section ($\partial_{\alpha\beta} = 0$, $\alpha, \beta = 1, \ldots, 4$)

$$m_{ab} = \begin{pmatrix} \frac{g_{\alpha\beta}}{\sqrt{|g|}} & v_{\alpha} \\ v_{\beta} & \sqrt{|g|} \left(\pm e^{\phi} + v^{\alpha} v_{\alpha} \right) \end{pmatrix} , \qquad (33)$$

with the signature of $g_{\alpha\beta}$ determining the sign of $\pm e^{\phi}$:

$$\operatorname{sign}(g_{\alpha\beta}) = (-, +, +, +)$$
 & $-e^{\phi}$: Lorentzian M-theory,
 $\operatorname{sign}(g_{\alpha\beta}) = (-, -, +, +)$ & e^{ϕ} : M*-theory.

In Einstein frame $(g_E)_{\alpha\beta}=e^{-2\phi}g_{\alpha\beta}$, Lorentzian M-theory

$$S = \int d^4x \sqrt{|g_E|} \left(R(g_E) - \frac{1}{48} e^{-7\phi} F_{\alpha\beta\gamma\delta} F^{\alpha\beta\gamma\delta} - \frac{7}{2} \partial_\alpha \phi \, \partial^\alpha \phi \right) \,, \quad (35)$$

M*-theory in Einstein frame

$$S = \int d^4x \sqrt{|g_E|} \left(-R(g_E) + \frac{1}{48} e^{-7\phi} F_{\alpha\beta\gamma\delta} F^{\alpha\beta\gamma\delta} + \frac{7}{2} \partial_\alpha \phi \, \partial^\alpha \phi \right) , \quad (36)$$

has two timelike directions.

For IIB section
$$(\partial_{\mu i} = \partial_{ij} = 0, \quad \mu, \nu = 1, 2, 3, \quad i, j = 4, 5)$$
 can choose $\operatorname{sign}(\tilde{g}^{\mu\nu}) = (+, -, -) \& \operatorname{sign}(\tilde{\mathcal{M}}_{ij}) = (+, +) : \quad \operatorname{Lorentzian IIB theory}$ $\operatorname{sign}(\tilde{g}^{\mu\nu}) = (-, +, +) \& \operatorname{sign}(\tilde{\mathcal{M}}_{ij}) = (-, +) : \quad \operatorname{IIB}^* \text{ theory}$ $\operatorname{sign}(\tilde{g}^{\mu\nu}) = (+, +, +) \& \operatorname{sign}(\tilde{\mathcal{M}}_{ij}) = (-, -) : \quad \operatorname{Euclidean IIB theory}$

Lorentzian IIB theory

$$S = \int d^{3}\tilde{x} \sqrt{|\tilde{g}_{E}|} \left(-\tilde{R}(\tilde{g}_{E}) - \frac{1}{4} \tilde{\partial}_{\mu} \tilde{\mathcal{M}}_{ij} \tilde{\partial}^{\mu} \tilde{\mathcal{M}}^{ij} + \frac{1}{12} e^{-7\tilde{\phi}} \tilde{H}_{i\mu\nu\rho} \tilde{H}^{i\mu\nu\rho} + \frac{7}{2} \tilde{\partial}_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi} \right).$$

$$(37)$$

- ullet Mostly negative spacetime signature hence $- ilde{R}$ term.
- $\tilde{\mathcal{M}}_{ii}$ is positive definite.
- All kinetic terms have right sign.

IIB* theory

$$S = \int d^{3}\tilde{x} \sqrt{|\tilde{g}_{E}|} \left(\tilde{R}(\tilde{g}_{E}) + \frac{1}{4} \tilde{\partial}_{\mu} \tilde{\mathcal{M}}_{ij} \tilde{\partial}^{\mu} \tilde{\mathcal{M}}^{ij} + \frac{1}{12} e^{-7\tilde{\phi}} \tilde{H}_{i\mu\nu\rho} \tilde{H}^{i\mu\nu\rho} - \frac{7}{2} \tilde{\partial}_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi} \right).$$

$$(38)$$

- Lorentzian spacetime but \mathcal{M}_{ij} has one positive and one negative direction (parameterises $\frac{SL(2)}{SO(1.1)}$).
- $\tilde{\partial}^{\mu}\tilde{\mathcal{M}}^{ij}\tilde{\partial}_{\mu}\tilde{\mathcal{M}}_{ij}$ and $\tilde{\mathcal{M}}_{ij}\tilde{H}^{i\mu\nu}\tilde{H}^{j}_{\mu\nu}$ in action.
- ullet One of the scalars in $\tilde{\mathcal{M}}_{ij}$ and one of the 2-forms $\tilde{\mathcal{C}}^{i\mu\nu}$ have kinetic terms with the wrong signs.

Euclidean IIB theory

$$S = \int d^{3}\tilde{x} \sqrt{\tilde{g}_{E}} \left(-\tilde{R}(\tilde{g}_{E}) - \frac{1}{4} \tilde{\partial}_{\mu} \tilde{\mathcal{M}}_{ij} \tilde{\partial}^{\mu} \tilde{\mathcal{M}}^{ij} + \frac{1}{12} e^{-7\tilde{\phi}} \tilde{H}_{i\mu\nu\rho} \tilde{H}^{i\mu\nu\rho} + \frac{7}{2} \tilde{\partial}_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi} \right). \tag{39}$$

Timelike dualities revisited

We found the M^* , IIB^* theories. Are they related by timelike dualities to M and IIB theories?

Consider a purely gravitational solution (i.e $v_{\alpha}=0$)

$$m_{ab} = \begin{pmatrix} \frac{g_{\alpha\beta}}{\sqrt{|g|}} & 0\\ 0 & -\sqrt{|g|} e^{\phi} \end{pmatrix} . \tag{40}$$

You could be forgiven for thinking that a duality can swap the $-e^{\phi}$ component for a spacelike component of $g_{\alpha\beta}$ thus giving an extra timelike direction (M*).

However, the signature of $g_{\alpha\beta}$ is fixed by η which in this case is $\eta=\mathrm{diag}\,(-1,+1,+1,+1,-1)$. Thus, $g_{\alpha\beta}$ is fixed to have signature (3,1).

What's going on?

We have assumed a parameterisation of the generalised metric,

$$m_{ab} = \begin{pmatrix} \frac{g_{\alpha\beta}}{\sqrt{|g|}} & v_{\alpha} \\ v_{\beta} & \sqrt{|g|} \left(-e^{\phi} + v^{\alpha} v_{\alpha} \right) \end{pmatrix} . \tag{41}$$

In terms of vielbeine, this corresponds to

$$E^{\hat{a}}_{a} = \begin{pmatrix} \frac{e^{\hat{\alpha}}_{\alpha}}{\sqrt{|e|}} & v^{\hat{\alpha}}\sqrt{|e|} \\ 0 & \sqrt{|e|}e^{\phi/2} \end{pmatrix}, \tag{42}$$

such that $m = E^T \eta E$ where $\eta = \operatorname{diag}(-1, +1, +1, +1, -1)$ in this case.

Under a duality $u \in SL(5)$, the vielbein transforms as

$$E \to Eu$$
. (43)

It can also transform under the generalised Lorentz group H = SO(3,2), say $h(X) \in H$,

$$E \to HE$$
. (44)

In general, under a duality, we need to perform

$$E \rightarrow hEu$$
 . (45)

Note that $h^T \eta h = \eta$ and in particular, SO(3,2) does not act transitively on the space of all η 's.

So in general, we cannot preserve the parameterisation because this would imply changing η which is impossible.

An alternative parameterisation

An alternative parameterisation comes from the vielbein

$$E^{\hat{a}}{}_{a} = \begin{pmatrix} \frac{\tilde{e}^{\hat{\alpha}}{}_{\alpha}}{\sqrt{|\tilde{e}|}} & 0\\ \frac{w_{\alpha}e^{\tilde{\phi}/2}}{\sqrt{|\tilde{e}|}} & e^{\tilde{\phi}/2}\sqrt{|\tilde{e}|} \end{pmatrix} . \tag{46}$$

The generalised metric would then have the form

$$m_{ab} = \begin{pmatrix} \frac{\tilde{g}_{\alpha\beta} - e^{\tilde{\phi}} w_{\alpha} w_{\beta}}{\sqrt{|\tilde{g}|}} & e^{\tilde{\phi}} w_{\alpha} \\ e^{\tilde{\phi}} w_{\beta} & -\sqrt{|\tilde{g}|} e^{\tilde{\phi}} \end{pmatrix} . \tag{47}$$

Thus, in the example before: swapping $-e^{\phi}$ and a spacelike component of $g_{\alpha\beta}$ would correspond to a solution in terms of this parameterisation.

What is w_{α} ?

The parameterisation involved

$$w_{\alpha} = \frac{1}{3!} \epsilon_{\alpha\beta\gamma\delta} \Omega^{\beta\gamma\delta} \,, \tag{48}$$

which is a new field: a tri-vector $\Omega^{\alpha\beta\gamma}$. This is analogous to $\beta^{\alpha\beta}$ in DFT which we encountered in non-geometry. Thus, this field will also arise in non-geometry.

In general, we should consider "supergravity" with the trivector.

The EFT action $L \sim (\partial m)^2$ encodes its low-energy dynamics.

When can we use $C_{\alpha\beta\gamma}$?

We can use the standard parameterisation in terms of a metric and 3-form, only when

$$m_{\alpha\beta}$$
 has signature $(1,3)$. (49)

Similarly, we can only use the parameterisation with $\Omega^{\alpha\beta\gamma}$ when

$$m_{55} \ge 0$$
. (50)

Otherwise, we need to use both $C_{\alpha\beta\gamma}$ and $\Omega^{\alpha\beta\gamma}$.

In general, dualities can lead to a singular $m_{\alpha\beta}$ but this does not imply $g_{\alpha\beta}$ is singular. Instead, we should be using $\Omega^{\alpha\beta\gamma}$ parameterisation.

Outline

- M-theory and U-dualities
- 2 Review of DFT
- 3-D truncation of IIA
- 4 3-D truncation of IIB
- Timelike dualities
- 6 Lorentzian signature
- Conclusions

Summary

EFT is "bigger" than the truncation of 11-D SUGRA it came from: it also contains IIB.

In Lorentzian signature, the EFT contains M, M*, IIB, IIB* on equal footings but dualities do not relate these to each other.

Instead, timelike dualities can lead to new fields, e.g. $\Omega^{\alpha\beta\gamma}$ which also arise in non-geometries.

Future work

 E_{11} and un-truncated 11-D theory?

Will higher duality groups contain more solutions to section condition?

Non-geometry, including RR non-geometry?

Construction of fully non-geometric backgrounds which cannot be dualised into geometric backgrounds.

Low and high temperature?