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1 Introduction

Complex manifolds are important in many different areas of string theory. For example, the
Euclidean string worldsheet is a complex manifold (as we will show later on in these lectures).
In this set of lectures I will focus primarily on the role of complex manifolds in the context of
superstring compactifications and with this aim in mind I hope to guide you to an understanding
of Calabi-Yau manifolds. Apart from Kaluza-Klein reductions, compactifying on Calabi-Yau
manifolds is still one of the best understood methods of obtaining a realistic 4-dimensional low-
energy theory.

In order to understand Calabi-Yau manifolds, we will meet complex manifolds, symplectic
manifolds, Kéhler manifolds, Betti numbers and other mathematical concepts along the way
which are very important in many different areas of theoretical physics, for example gauge
theories.

My goal is to give a physicists perspective on these mathematical concepts. There will be
some proofs but they may not be of the rigour expected by pure mathematicians. However, for
a physicist’s purpose, they will suffice.

I am assuming familiarity with real differential geometry, in particular differential forms, at
the level of a graduate course in General Relativity. During the first lecture, I will motivate
why Calabi-Yau compactifications are useful in string theory. This will necessarily assume some
knowledge of string theory and supergravity. However, beyond the motivation I will aim to keep

these lectures self-contained.

1.1 Literature

There are many references available on the internet on string compactifications. In preparing

these notes I found the following useful:

e “Lectures on Complex Manifolds” by Philip Candelas, (excellent thorough reference but
hard to find),



“String theory compactifications” by Mariana Grana and Hagen Triendl, (good on the
low-energy theory), http://ipht.cea.fr/Docspht/articles/t13/042/public/Notes.pdf,

e “Lectures on Riemannian Geometry, Part II: Complex Manifolds” by Stefan Vandoren
(nice set of notes from a physicist’s perspective),
http://www.staff.science.uu.nl/ vando101/MRIlectures.pdf,

e “Lectures on complex geometry, Calabi-Yau manifolds and toric geometry” by Vincent

Bouchard, arXiv:hep-th/0702063 (much more advanced in certain areas),
e “Lecture Notes on Complex Differential Geometry” by Jeff Murugan.

There are also excellent textbooks which cover Calabi-Yau manifolds from a string theory

perspective, for example

e Chapters 9 and 10 of “String theory and M-theory — A modern introduction” by Katrin
Becker, Melanie Becker and John H. Schwarz,

e Chapters 15 and others of “Superstring theory: volume 2” by Michael B. Green, John H.
Schwarz and Edward Witten.

1.2 Motivation for Calabi-Yau compactifications

String theory predicts a 10-dimensional supergravity background with N' = 2 SUSY (32 super-
charges), known as type II supergravity, or N’ =1 SUSY (16 supercharges). The latter comes
from what is known as heterotic string theory and is what we will focus on in this section.

We know that we live in a four-dimensional universe and so we are forced to look for a way to
achieve this from 10-dimensional supergravity. The way to do this is to compactify six dimensions
on some internal manifold so that

M10 = M4 X Mg, (11)

and we want M, to resemble our universe. If we take Mg to be a T® we preserve all the
supersymmetry and end up with a 4-dimensional N' = 4 theory. While this is a very nice theory
because of the large symmetry, it cannot describe our universe.

This forces us to consider a compactification which breaks some supersymmetry. We do
not want to break all the supersymmetry to keep calculations simple. There are also various
phenomenological reasons to expect some supersymmetry to be remnant at lower energies (for
example the supersymmetric grand unification scale — 10'® GeV — or even the TeV scale).

Let us further assume that the four-dimensional manifold is Minkowski{ll Note that if we have
any VEVs of vector or tensor fields in My, these would give a preferred direction hence breaking
Poincaré invariance. Such vector and tensor fields could arise from components mixing between
the My and Mg as will be made clear shortly. Let us use M, N = 1,...10 for the 10-dimensional

1We will show in Exercise 1.x that we can relax this to a maximally symmetric spacetime, i.e. deSitter,
Minkowski or Anti deSitter. Supersymmetry then requires the external manifold to be Minkowski.



spacetime indices, u,v = 1,...6 for the 6-dimensional space indices (which we will mostly be
concerned with here) and m,n = 1,...4 for the 4-dimensional spacetime indices. We denote the
internal coordinates by y* and external coordinates by z™.

For the purpose of these lectures, all you need to know is that 10-dimensional N' = 1 su-
pergravity contains a 3-form field strength Hy/yp, as well as some 2-form field strengths Fi,
labelled by the index i, a scalar, known as the dilaton, and some fermions, all coupled to gravity.
The fact that we do not want vector or tensor VEVs means that there is no mixing between My

and Mg components of the metric and the form fields, i.e.
Gum =0, Hyyn = Hypm =0, F.,.=0. (1.2)

For the purpose of these lectures we make the big simplifying assumption that we have
no fluxes turned on in the internal manifold and that the dilaton is constant. We will show
that this implies the internal space is a Calabi-Yau manifold. Internal manifolds with fluxes
turned on are described by generalised complex geometry and will be generalised Calabi-Yau
manifolds. These are still an active area of research and we will not deal with them in this set
of lectures.

To summarise, we make the following Ansatz:

° M10:M4 XM@,

9um = 0, Hp,mn = Hp,l/m =0, F/im =0,
e No fluxes in Mg and constant dilaton,
e M, is Minkowski (or maximally symmetric, see Exercise 1.1),

and we want to find Mg so that some supersymmetry is unbroken.

Let us study the Einstein equations are

1
RMN_iRgMN:TMN- (1.3)

Here R is the Ricci scalar of Ry;n and because of ([1.2]) this has a purely internal contribution
R and a four-dimensional contribution R:
R=g"VRyn =g" Ry + g™ Ryn = R+ R. (1.4)

Since the 4-dimensional manifold is Minkowski, R = 0, and so we find for the internal space
1 -
Ry — iRQuu =T =0. (1.5)
Since there are no fluxes present, the right hand side vanishes and we find that the internal space

is Ricci-flat:

Ry, =0. (1.6)



We also want to preserve some supersymmetry. Schematically the supersymmetry equations
are

e (bosons) = e fermions, J¢ (fermions) = bosons ¢, (1.7

where € is the (local) supersymmetry parameter. As for any classical background we want the
fermions to vanish and so the bosonic variation vanishes automatically but not the variation of
the fermions which instead puts a condition on our internal manifold. In fact, all the fermion
variations automatically vanish in the flux-less case considered here except for the gravitincﬂ

variations. The gravitino variation is given by:
U = Ve + (fluxes),, €. (1.8)
We need this to vanish for at least one e. Thus, we need at least one spinor for which
Vaue=0. (1.9)

This is known as the Killing spinor equation. If we split the spinor into an internal 6-

dimensional 1 and external piece 4-dimensional piece &,

e(z,y) = &{(x) @n(y) + hec., (1.10)

we find that 0,,€ = 0 and, more importantly,
Vun=0. (1.11)

The requirement of having at least one covariantly constant spinor on the internal space is a
stringent requirement: it leads directly lead to Calabi-Yau manifolds, as we will now outlineﬂ

It is not much work (but beyond the scope of these lectures) to show that a compactification
of heterotic string theory on a 6-dimensional Calabi-Yau leads to a 4-dimensional theory with

N =1 supersymmetry.

2The gravitino is the superpartner of the graviton
3In fact, Calabi-Yau manifolds have ezactly one covariantly constant spinor.



Exercise 1.1*: The next four exercises will show that as long as M, is maximally sym-
metric, i.e. it is Minkowski, dS or AdS, the existence of a covariantly constant spinor on
My

Vm€=0, (1.12)

implies that M, is in fact Minkowski.

*These exercises require some advanced techniques from General Relativity so if you have
not seen much General Relativity yet, you may want to skip them. The remainder of these
lectures does not rely on these results or the techniques used.

Show that

1 1
[V, Vo] n = 56[mwn]ab7abn + ~WmabWned ['Yabv ’YCd] UE (1.13)

4

Hint: Recall that the covariant derivative of a spinor is defined as

1
Vmn = (am + 4wmawab> n, (1.14)

where 7% are (flat) Dirac y-matrices and also that the Christoffel symbols T,,,” are

symmetric.

Exercise 1.2*: Show that

ab cd] d)b

[v*0,7°%] = —4y°len®® 4 ayPlepdle (1.15)
where 7% is the Minkowski metric.

Hint: You may first want to show that v = %4 — nab,

Exercise 1.3*: Use the results (1.13]) and (1.15) to show that

1
[vnu vn] n= ZRabmn'Yabn s (1'16>
and hence
Vit = 0 = Rpgmnt =0. (1.17)

Hint: Ruopmn = 28[mwn]ab + QW[m|ac|wn]Cb.




Exercise 1.4*: Use the fact that for a maximally symmetric spacetime M, the Riemann

tensor has the form =
Rmnpq = ggm[pgq]na (118)

where R is the constant Ricci scalar of My to show that (1.17) implies

R=0, (1.19)

and hence that M, must be Minkowski.

Exercise 1.5*: Use the Bianchi identity

Rimnplq =0, (1.20)
to show that for a general manifold, implies

Rypny"n=0. (1.21)
Hint: You may first want to show that

AP = TPy 9 gminp] (1.22)

Before we study the requirement ([1.11)) in more detail, we need to talk about holonomy

groups.

1.2.1 Holonomy groups

For a Riemannian manifold of dimension d, the holonomy group describes how some objects
(vectors, tensors, spinors, ...) transform under parallel transport around closed curves. Let us

make this clear with some examples.

Example 1.1: The holonomy group of a general d-dimensional Riemannian manifold is O(d).
This is because parallel transport preserves the length of vectors, thus any vector gets mapped
into a vector of equal length after parallel transport around a closed loop. The group that acts
like this is O(d).

[ Exercise 1.6: Show that the length of a vector is invariant under parallel transport. ]

Example 1.2: The holonomy group of a general d-dimensional orientable Riemannian manifold
is SO(d). This is because for orientable manifolds, vectors cannot be reflected after parallel

transport around a closed loop.



Example 1.3: For a spin manifold (i.e. a manifold admitting spinors), the holonomy group is
Spin(d). This is because spinors transform under Spin(d) (the double cover of SO(d)). Because
Spin(d) contains SO(d) as a subset, we would quote Spin(d) as the holonomy group of a general

spin manifold.

Example 1.4: Consider first RZ. After parallel transport around a closed loop, vectors remain
unchanged. Thus, the holonomy group is trivial (it contains only the identity element).

Consider now R?/Z,. That is, identify all points related by a rotation by 7/2. We can now
form “closed loops” by taking an arc of 7/2 of a circle or multiples thereof. Thus, we find that
vectors will be rotated by multiples of /2 after parallel transport around closed loops. Thus,

the holonomy group is now Zj,.

Let us now return to the compactification problem at hand. We have a spinor n that is
covariantly constant and hence remains invariant under parallel transport around a closed loop.
Because it is a spinor it transforms in the fundamental of Spin(6) ~ SU(4). Thus, the holonomy
group must be some subset of SU(4), say H C SU(4) which keeps the spinor invariant. Note

that we can use a SU(4) transformation to put the spinor into the form

n= : (1.23)

Now we can see that the subgroup H must be SU(3) (or a subset thereof) which acts on the first
three components of the spinor in the above form. We see that a 6-dimensional spinor remains
invariant under SU(3) and so this must thus be the holonomy group. We say that:
“The holonomy group is reduced to SU(3).”
These two requirements, a Ricci-flat manifold with holonomy group SU(d/2), imply a Calabi-
Yau manifold. There are various other equivalent definitions of Calabi-Yau manifolds, for ex-

ample:
A Calabi-Yau manifold is a Kahler manifold with ¢; = 0.

The aim of these lectures is to make it clear how these two definitions are related and to study

some properties of Calabi-Yau manifolds.
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