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1 Introduction

Complex manifolds are important in many different areas of string theory. For example, the

Euclidean string worldsheet is a complex manifold (as we will show later on in these lectures).

In this set of lectures I will focus primarily on the role of complex manifolds in the context of

superstring compactifications and with this aim in mind I hope to guide you to an understanding

of Calabi-Yau manifolds. Apart from Kaluza-Klein reductions, compactifying on Calabi-Yau

manifolds is still one of the best understood methods of obtaining a realistic 4-dimensional low-

energy theory.

In order to understand Calabi-Yau manifolds, we will meet complex manifolds, symplectic

manifolds, Kähler manifolds, Betti numbers and other mathematical concepts along the way

which are very important in many different areas of theoretical physics, for example gauge

theories.

My goal is to give a physicists perspective on these mathematical concepts. There will be

some proofs but they may not be of the rigour expected by pure mathematicians. However, for

a physicist’s purpose, they will suffice.

I am assuming familiarity with real differential geometry, in particular differential forms, at

the level of a graduate course in General Relativity. During the first lecture, I will motivate

why Calabi-Yau compactifications are useful in string theory. This will necessarily assume some

knowledge of string theory and supergravity. However, beyond the motivation I will aim to keep

these lectures self-contained.

1.1 Literature

There are many references available on the internet on string compactifications. In preparing

these notes I found the following useful:

• “Lectures on Complex Manifolds” by Philip Candelas, (excellent thorough reference but

hard to find),
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• “String theory compactifications” by Mariana Graña and Hagen Triendl, (good on the

low-energy theory), http://ipht.cea.fr/Docspht/articles/t13/042/public/Notes.pdf,

• “Lectures on Riemannian Geometry, Part II: Complex Manifolds” by Stefan Vandoren

(nice set of notes from a physicist’s perspective),

http://www.staff.science.uu.nl/ vando101/MRIlectures.pdf,

• “Lectures on complex geometry, Calabi-Yau manifolds and toric geometry” by Vincent

Bouchard, arXiv:hep-th/0702063 (much more advanced in certain areas),

• “Lecture Notes on Complex Differential Geometry” by Jeff Murugan.

There are also excellent textbooks which cover Calabi-Yau manifolds from a string theory

perspective, for example

• Chapters 9 and 10 of “String theory and M-theory – A modern introduction” by Katrin

Becker, Melanie Becker and John H. Schwarz,

• Chapters 15 and others of “Superstring theory: volume 2” by Michael B. Green, John H.

Schwarz and Edward Witten.

1.2 Motivation for Calabi-Yau compactifications

String theory predicts a 10-dimensional supergravity background with N = 2 SUSY (32 super-

charges), known as type II supergravity, or N = 1 SUSY (16 supercharges). The latter comes

from what is known as heterotic string theory and is what we will focus on in this section.

We know that we live in a four-dimensional universe and so we are forced to look for a way to

achieve this from 10-dimensional supergravity. The way to do this is to compactify six dimensions

on some internal manifold so that

M10 = M4 ×M6 , (1.1)

and we want M4 to resemble our universe. If we take M6 to be a T 6 we preserve all the

supersymmetry and end up with a 4-dimensional N = 4 theory. While this is a very nice theory

because of the large symmetry, it cannot describe our universe.

This forces us to consider a compactification which breaks some supersymmetry. We do

not want to break all the supersymmetry to keep calculations simple. There are also various

phenomenological reasons to expect some supersymmetry to be remnant at lower energies (for

example the supersymmetric grand unification scale – 1016 GeV – or even the TeV scale).

Let us further assume that the four-dimensional manifold is Minkowski1. Note that if we have

any VEVs of vector or tensor fields in M4, these would give a preferred direction hence breaking

Poincaré invariance. Such vector and tensor fields could arise from components mixing between

the M4 and M6 as will be made clear shortly. Let us use M,N = 1, . . . 10 for the 10-dimensional

1We will show in Exercise 1.x that we can relax this to a maximally symmetric spacetime, i.e. deSitter,
Minkowski or Anti deSitter. Supersymmetry then requires the external manifold to be Minkowski.
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spacetime indices, µ, ν = 1, . . . 6 for the 6-dimensional space indices (which we will mostly be

concerned with here) and m,n = 1, . . . 4 for the 4-dimensional spacetime indices. We denote the

internal coordinates by yµ and external coordinates by xm.

For the purpose of these lectures, all you need to know is that 10-dimensional N = 1 su-

pergravity contains a 3-form field strength HMNP , as well as some 2-form field strengths F iMN ,

labelled by the index i, a scalar, known as the dilaton, and some fermions, all coupled to gravity.

The fact that we do not want vector or tensor VEVs means that there is no mixing between M4

and M6 components of the metric and the form fields, i.e.

gµm = 0 , Hµmn = Hµνm = 0 , F iµm = 0 . (1.2)

For the purpose of these lectures we make the big simplifying assumption that we have

no fluxes turned on in the internal manifold and that the dilaton is constant. We will show

that this implies the internal space is a Calabi-Yau manifold. Internal manifolds with fluxes

turned on are described by generalised complex geometry and will be generalised Calabi-Yau

manifolds. These are still an active area of research and we will not deal with them in this set

of lectures.

To summarise, we make the following Ansatz:

• M10 = M4 ×M6,

• gµm = 0 , Hµmn = Hµνm = 0 , F iµm = 0,

• No fluxes in M6 and constant dilaton,

• M4 is Minkowski (or maximally symmetric, see Exercise 1.1),

and we want to find M6 so that some supersymmetry is unbroken.

Let us study the Einstein equations are

RMN −
1

2
RgMN = TMN . (1.3)

Here R is the Ricci scalar of RMN and because of (1.2) this has a purely internal contribution

R̃ and a four-dimensional contribution R̂:

R = gMNRMN = gµνRµν + gmnRmn = R̃+ R̂ . (1.4)

Since the 4-dimensional manifold is Minkowski, R̂ = 0, and so we find for the internal space

Rµν −
1

2
R̃gµν = Tµν = 0 . (1.5)

Since there are no fluxes present, the right hand side vanishes and we find that the internal space

is Ricci-flat:

Rµν = 0 . (1.6)
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We also want to preserve some supersymmetry. Schematically the supersymmetry equations

are

δε (bosons) = ε fermions , δε (fermions) = bosons ε , (1.7)

where ε is the (local) supersymmetry parameter. As for any classical background we want the

fermions to vanish and so the bosonic variation vanishes automatically but not the variation of

the fermions which instead puts a condition on our internal manifold. In fact, all the fermion

variations automatically vanish in the flux-less case considered here except for the gravitino2

variations. The gravitino variation is given by:

δΨM = ∇M ε+ (fluxes)M ε . (1.8)

We need this to vanish for at least one ε. Thus, we need at least one spinor for which

∇M ε = 0 . (1.9)

This is known as the Killing spinor equation. If we split the spinor into an internal 6-

dimensional η and external piece 4-dimensional piece ξ,

ε(x, y) = ξ(x)⊗ η(y) + h.c. , (1.10)

we find that ∂mξ = 0 and, more importantly,

∇µη = 0 . (1.11)

The requirement of having at least one covariantly constant spinor on the internal space is a

stringent requirement: it leads directly lead to Calabi-Yau manifolds, as we will now outline.3

It is not much work (but beyond the scope of these lectures) to show that a compactification

of heterotic string theory on a 6-dimensional Calabi-Yau leads to a 4-dimensional theory with

N = 1 supersymmetry.

2The gravitino is the superpartner of the graviton
3In fact, Calabi-Yau manifolds have exactly one covariantly constant spinor.

4



Exercise 1.1*: The next four exercises will show that as long as M4 is maximally sym-

metric, i.e. it is Minkowski, dS or AdS, the existence of a covariantly constant spinor on

M4

∇mξ = 0 , (1.12)

implies that M4 is in fact Minkowski.
∗These exercises require some advanced techniques from General Relativity so if you have

not seen much General Relativity yet, you may want to skip them. The remainder of these

lectures does not rely on these results or the techniques used.

Show that

[∇m,∇n] η =
1

2
∂[mωn]abγ

abη +
1

4
ωmabωncd

[
γab, γcd

]
η . (1.13)

Hint: Recall that the covariant derivative of a spinor is defined as

∇mη =

(
∂m +

1

4
ωmabγ

ab

)
η , (1.14)

where γab are (flat) Dirac γ-matrices and also that the Christoffel symbols Γmn
ρ are

symmetric.

Exercise 1.2*: Show that

[
γab, γcd

]
= −4γa[cηd]b + 4γb[cηd]a , (1.15)

where ηab is the Minkowski metric.

Hint: You may first want to show that γab = γaγb − ηab.

Exercise 1.3*: Use the results (1.13) and (1.15) to show that

[∇m,∇n] η =
1

4
Rabmnγ

abη , (1.16)

and hence

∇mη = 0⇒ Rpqmnγ
pqη = 0 . (1.17)

Hint: Rabmn = 2∂[mωn]ab + 2ω[m|ac|ωn]
c
b.
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Exercise 1.4*: Use the fact that for a maximally symmetric spacetime M4 the Riemann

tensor has the form

Rmnpq =
R

6
gm[pgq]n , (1.18)

where R is the constant Ricci scalar of M4 to show that (1.17) implies

R = 0 , (1.19)

and hence that M4 must be Minkowski.

Exercise 1.5*: Use the Bianchi identity

R[mnp]q = 0 , (1.20)

to show that for a general manifold, (1.17) implies

Rmnγ
mη = 0 . (1.21)

Hint: You may first want to show that

γmγnp = γmnp + 2gm[nγp] . (1.22)

Before we study the requirement (1.11) in more detail, we need to talk about holonomy

groups.

1.2.1 Holonomy groups

For a Riemannian manifold of dimension d, the holonomy group describes how some objects

(vectors, tensors, spinors, . . . ) transform under parallel transport around closed curves. Let us

make this clear with some examples.

Example 1.1: The holonomy group of a general d-dimensional Riemannian manifold is O(d).

This is because parallel transport preserves the length of vectors, thus any vector gets mapped

into a vector of equal length after parallel transport around a closed loop. The group that acts

like this is O(d).

Exercise 1.6: Show that the length of a vector is invariant under parallel transport.

Example 1.2: The holonomy group of a general d-dimensional orientable Riemannian manifold

is SO(d). This is because for orientable manifolds, vectors cannot be reflected after parallel

transport around a closed loop.
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Example 1.3: For a spin manifold (i.e. a manifold admitting spinors), the holonomy group is

Spin(d). This is because spinors transform under Spin(d) (the double cover of SO(d)). Because

Spin(d) contains SO(d) as a subset, we would quote Spin(d) as the holonomy group of a general

spin manifold.

Example 1.4: Consider first R2. After parallel transport around a closed loop, vectors remain

unchanged. Thus, the holonomy group is trivial (it contains only the identity element).

Consider now R2/Z4. That is, identify all points related by a rotation by π/2. We can now

form “closed loops” by taking an arc of π/2 of a circle or multiples thereof. Thus, we find that

vectors will be rotated by multiples of π/2 after parallel transport around closed loops. Thus,

the holonomy group is now Z4.

Let us now return to the compactification problem at hand. We have a spinor η that is

covariantly constant and hence remains invariant under parallel transport around a closed loop.

Because it is a spinor it transforms in the fundamental of Spin(6) ' SU(4). Thus, the holonomy

group must be some subset of SU(4), say H ⊂ SU(4) which keeps the spinor invariant. Note

that we can use a SU(4) transformation to put the spinor into the form

η =


0

0

0

η0

 . (1.23)

Now we can see that the subgroup H must be SU(3) (or a subset thereof) which acts on the first

three components of the spinor in the above form. We see that a 6-dimensional spinor remains

invariant under SU(3) and so this must thus be the holonomy group. We say that:

“The holonomy group is reduced to SU(3).”

These two requirements, a Ricci-flat manifold with holonomy group SU(d/2), imply a Calabi-

Yau manifold. There are various other equivalent definitions of Calabi-Yau manifolds, for ex-

ample:

A Calabi-Yau manifold is a Kähler manifold with c1 = 0.

The aim of these lectures is to make it clear how these two definitions are related and to study

some properties of Calabi-Yau manifolds.
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