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4 Symplectic and Hermitian manifolds

In this chapter we will further develop the theory of complex manifolds by studying two different

structures that one can define on (almost) complex manifolds. The first leads to symplectic

manifolds, which underlie many areas of theoretical physics, for example classical mechanics.

We will then discuss Hermitian metrics on (almost) complex manifolds and their associated

fundamental forms.

4.1 Symplectic manifolds

Definition: A symplectic manifold (M,ω) is a manifold M equipped with a non-

degenerate closed 2-form ω. Such a form is called a symplectic form.

The requirement that the symplectic form be non-degenerate means that ωµν is invertible,

i.e. it has an inverse ωµν such that

ωµνωνρ = δµρ . (4.1)

Theorem 4.1: A symplectic manifold has even dimension.

Proof: An invertible antisymmetric matrix must have even numbers of rows and columns.

Without referring to a coordinate system, the non-degeneracy requirement is equivalent to

demanding that for a manifold of dimension 2n, the n-th wedge product of ω is nowhere vanishing:

ωn = ω ∧ ω ∧ . . . ∧ ω 6= 0 . (4.2)

This condition is the same as requiring the determinant of ω to be non-zero everywhere.

Example 4.1: R2n is symplectic. We can see this by taking R2n = Rn × Rn with coordinates
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xi and yi, where i = 1, . . . , n, respectively. Then the symplectic form is given by

ω = dxi ∧ dyi . (4.3)

It is clear that this is globally defined, closed and non-degenerate. In matrix notation, the

symplectic form is given by

ω =

(
0 In×n

−In×n 0

)
. (4.4)

The fact that this is reminiscent of the almost complex structure we encountered in chapter 2

(given in terms of a real coordinate basis) is not an accident. We will see the connection arise

later.

Example 4.2: T ∗M is symplectic. You may have encountered this example when studying

classical mechanics. Let us denote by xi local coordinates on the base manifold M , and by pi

the fibre coordinates. As a manifold T ∗M has local coordinates
(
xi, p

i
)
. The fibre coordinates

just label the different 1-forms in T ∗M , so that we can write a general 1-form as

θ = pidx
i . (4.5)

This is called the canonical 1-form and from it we can construct a symplectic form as

ω = dθ = dpi ∧ dxi . (4.6)

By construction ω is closed and it is clearly non-degenerate. In classical mechanics, the xi and

pi represent the position and momentum of a particle, respectively, and T ∗M is the phase space

of that particle.

Example 4.3: CPN is symplectic. We will prove this in chapter 5 where we show that CPN is

Kähler and that all Kähler manifolds are symplectic.

Theorem 4.2: All 2-dimensional orientable manifolds are symplectic.

Proof: On a d-dimensional orientable manifold there exists a volume form ω which is a non-

degenerate d-form. It being a top-form, the exterior derivative automatically vanishes:

dω = 0 . (4.7)

In 2 dimensions, the volume form ω defines a symplectic form.
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Hermitian conjugate with respect to a metric

The Hermitian conjugate A† of an operator A : TM −→ TM with respect to a metric g

is defined as

g(AX,Y ) = g(X,A†Y ) ∀X,Y ∈ Γ (TM) . (4.8)

As usual, we call A Hermitian if A = A†, and anti-Hermitian if A = −A†. In this chapter

we will use two properties of Hermitian matrices. The first comes from the

Spectral theorem: If an operator is Hermitian with respect to a positive-definite

inner product, then it can be diagonalised and all its eigenvalues are real.

This generalises our intuition from linear algebra. Another property we will use is that if

a Hermitian matrix A = A† is positive definite with respect to the positive-definite metric

g, i.e.

g(AX,X) > 0 ∀X 6= 0 ∈ Γ (TM) , (4.9)

then the eigenvalues of A are positive.

The most important theorem of this chapter is the that we already hinted at in example 4.1:

Theorem 4.3: Any Riemannian symplectic manifold (M,ω) is almost complex.

Proof: Let us define A : V −→ V by

g(AX,Y ) = ω(X,Y ) ∀X,Y ∈ Γ (TM) . (4.10)

Using local coordiantes it is easy to see that such an A exists. We have

gρνAµ
ρXµY ν = ωµνX

µY ν , ∀X, Y ∈ Γ (TM) . (4.11)

This means that

gρνAµ
ρ = ωµν ⇒ Aµ

ν = ωµρg
ρν . (4.12)

The Hermitian conjugate of A is A† = −A as we can see from

g(AX,Y ) = ω(X,Y ) = −ω(Y,X) = −g(AY,X) = −g(X,AY ) , ∀X,Y ∈ Γ (TM) . (4.13)

This implies that A†A = −A2 is a Hermitian matrix. We will now want to show that we can

take an inverse square root of A†A by showing that its eigenvalues are positive. To do this, we

need to prove that AA† is positive definite with respect to g. Note that

A(X) = 0 ⇐⇒ X = 0 . (4.14)
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Thus,

g(A†AX,X) = g(AX,AX) > 0 ∀AX 6= 0 ∈ Γ (TM) . (4.15)

But by using (4.14) we have that

g(A†AX,X) > 0 ,∀X 6= 0 ∈ Γ (TM) , (4.16)

and hence A†A is positive definite and has positive eigenvalues. Thus, we can define

J =
(
A†A

)−1/2
A , (4.17)

which because A† = −A satisfies

J2 =
(
A†A

)−1
A2 = −I . (4.18)

J is globally well-defined because ω and g are and thus is an almost complex structure. This

completes our proof.

Exercise 4.1: Starting from (4.8), show that in a local coordinate basis the Hermitian

conjugate is defined as (
A†
)
µ
ν = gµσg

νρAρ
σ . (4.19)

We see that A† always exists.

Exercise 4.2: Show that A(X) = 0 ⇐⇒ X = 0.

Hint: Let AX = 0 for some X and use the definition of A and non-degeneracy of ω to

show that this implies X = 0.

An acute reader may have spotted that the almost complex structure defined here (4.17)

is the generalisation of the almost complex structure defined in chapter 2 for any orientable

2-dimensional Riemann surface (which by Theorem 4.2 is a symplectic manifold).
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Exercise 4.3: In chapter 2 we constructed an almost complex structure for any orientable

2-dimensional Riemann surface. Show that in this case the A defined above is

Aµ
ν = Jµ

ν = εµρg
ρν . (4.20)

Furthermore, show explicitly using the local coordinate expression (4.19) that in this case

A is anti-Hermitian, i.e. that

(
A†
)
µ
ν ≡ gµσgνρAρσ = −Aµν . (4.21)

Finally show that in this example

(
A†A

)
µ
ν = δµ

ν . (4.22)

Definition: An almost complex structure J on a symplectic manifold (M,ω) is said to

be compatible if for all X,Y ∈ Γ (TM)

ω (JX, JY ) = ω (X,Y ) , ω (X, JX) > 0 if X 6= 0 . (4.23)

Note: The compatibility requirement is defined with respect to real vectors.

Corollary: The almost complex structure J in (4.17) is compatible with ω.

Proof: First of all, notice that J† = −J is anti-Hermitian and that JA = AJ . Then, we can

show that for any X,Y ∈ Γ (TM)

ω (JX, JY ) = g (AJX, JY ) = g (JAX, JY ) = −g
(
AX, J2Y

)
= g (AX,Y ) = ω (X,Y ) . (4.24)

We can also use the positive-definiteness of A†A to show that for any X 6= 0 ∈ Γ (TM)

ω (X, JX) = g (AX, JX) = −g (JAX,X) = g
(√

A†AX,X
)
> 0 . (4.25)

This completes our proof.
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4.2 Hermitian manifolds

Definition: Let (M,J) be a 2n-dimensional (almost) complex manifold, and let g be a

Riemannian metric on M . The metric g is an (almost) Hermitian metric if it satisfies

any of the three following equivalent conditions:

• g (X,Y ) = g (JX, JY ) ∀X,Y ∈ Γ (TM) , (4.26)

• gµν = Jµ
ρJν

σgρσ , (4.27)

• In local complex coordinates za, z̄a, where a, b = 1, . . . , n,

g = gab̄(z, z̄)
(
dza ⊗ dz̄b + dz̄b ⊗ dza

)
, (4.28)

i.e. the components gab = gāb̄ = 0 vanish.

Exercise 4.4: Show that the first two conditions, (4.26) and (4.27), are equivalent.

It is easy to show that the first condition implies that any (anti-)holomorphic vector fields

are orthogonal with respect to the metric, i.e. if X,Y ∈ Γ (TM+) so that

JX = iX , JY = iY , (4.29)

then

g (X,Y ) = 0 , (4.30)

and similarly for anti-holomorphic vector fields.

Exercise 4.5: Prove the above, i.e. that any two holomorphic vector fields are orthogonal

with respect to g.

Since ∂
∂za and ∂

∂z̄a are a basis for holomorphic and anti-holorphic vectors, respectively, we

find that the components

gab = 0 , gāb̄ = 0 , (4.31)

and hence that the first condition implies the third.

Let us now show the converse, i.e. that if any (anti-)holomorphic vector fields are orthogonal

with respect to the metric then this implies g (X,Y ) = g (JX, JY ) for any X,Y ∈ Γ (TM).

Proof: Recall that we can write any X,Y ∈ Γ (TM) as

X = X+ +X− , Y = Y + + Y − , (4.32)
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where JX± = ±X± and similarly for Y . Then,

g (X,Y ) = g
(
X+, Y −

)
+ g

(
X−, Y +

)
, (4.33)

Now instead of considering the vector fields X and Y , consider the vector fields JX and JY .

We know that

P±JX = ±iP±X , (4.34)

and thus

g (JX, JY ) = i (−i) g
(
X+, Y −

)
+ (−i) i g

(
X−, Y +

)
= g

(
X+, Y −

)
+ g

(
X−, Y +

)
= g (X,Y ) .

(4.35)

This completes the proof.

Exercise 4.6: Repeat the proof above in local coordinates.

We see that a Hermitian metric defines a positive-definite inner product between the holo-

morphic and anti-holomorphic tangent spaces:

g : TpM
+ ⊗ TpM− −→ C ∀ p ∈M . (4.36)

Note: Hermiticity is a restriction on the metric, not on the manifold. In particular:

Theorem 4.4: Any (almost) complex manifold (M,J) admits an (almost) Hermitian

metric.

Proof: Let g be a Riemannian metric on M and define for any X,Y ∈ Γ (TM),

h (X,Y ) =
1

2

(
g (X,Y ) + g (JX, JY )

)
. (4.37)

Exercise 4.7: Show that for any X,Y ∈ Γ (TM),

h(JX, JY ) = h(X,Y ) , (4.38)

and that

h(X,X) ≥ 0 , (4.39)

with equality if and only if X = 0.

This completes the proof.
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Let us stress that in the above we consider only real vectors. On the complexified tangent

space, the metric is not positive-definite.

Corollary: A symplectic manifold always admits an almost Hermitian metric.

Proof: This follows immediately from theorem 4.3 which states that every symplectic manifold

is almost complex.

Definition: Let (M,J) be an (almost) complex manifold with a Hermitian metric g.

Then we define the fundamental 2-form as

ω (X,Y ) = g (JX, Y ) ∀X,Y ∈ Γ (TM) . (4.40)

This is also sometimes called the Hermitian 2-form.

Let us first show that this is actually a 2-form. For any X,Y ∈ Γ (TM) we find

ω (X,Y ) = g (JX, Y ) = g
(
J2X, JY

)
= −g (X, JY ) = −g (JY,X) = −ω (Y,X) . (4.41)

In a coordinate basis the definition implies

ωµν = Jµ
ρgρν , (4.42)

and hence in complex coordinates we find

ω = igab̄
(
dza ⊗ dz̄b − dz̄b ⊗ dza

)
, (4.43)

and we see that it is a (1, 1)-form.

Note: You will sometimes see the convention amongst physicists to label the components of ωµν

as Jµν ≡ ωµν = Jµ
ρgρν .

To get more familiar with this 2-form let us study a couple of properties of ω.

Corollary: The fundamental 2-form is non-degenerate.

Proof: Use local coordinates and define

ωµν = −gµρJρν = Jρ
µgρν . (4.44)

Then this defines an inverse since

ωµνωνρ = −gµσJσνJνκgκρ = δµρ . (4.45)

This completes the proof.
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Exercise 4.8: Show that gµρJρ
ν = −Jρµgρν .

Corollary: The fundamental form ω is compatible with J .

Proof: Recall that compatibility requires for any X,Y ∈ Γ (TM) that ω (JX, JY ) = ω (X,Y )

and ω (X,JX) > 0 when X 6= 0. Let us prove the first requirement:

ω (JX, JY ) = g
(
J2X, JY

)
= −g (X, JY ) = −g

(
JX, J2Y

)
= g (JX, Y ) = ω (X,Y ) . (4.46)

The second requirement follows from

ω (X, JX) = g (JX, JX) = g (X,X) > 0 , if X 6= 0 . (4.47)

This completes our proof.
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