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5 Kähler manifolds

In this chapter we will further develop the concepts met in the previous chapter which will lead

us to Kähler manifolds. This special kind of complex manifolds plays an important role in string

theory. In order to get ready for Calabi-Yau manifolds, we will also discuss the holonomy of

Kähler manifolds.

Let us start by defining a Kähler manifold.

Definition: Let (M,J) be a complex manifold with Hermitian matrix g and fundamental

2-form ω. If ω is closed, i.e.

dω = 0 , (5.1)

then M is called a Kähler manifold, g is called the Kähler metric and ω the Kähler

form.

Note: When (M, g, J) is an almost Hermitian manifold with dω = 0 then M is called almost

Kähler.

Example 5.1: All complex manifolds of 2 (real) dimensions are Kähler. This is because all

complex manifolds are Hermitian and any 2-form ω on a 2 dimensional manifold is closed.

Corollary: An (almost) Kähler manifold is a symplectic manifold.

How about the inverse? When is an (almost) complex, symplectic manifold Kähler? The

answer lies in the compatibility between ω and J .

Theorem 5.1: Let (M,ω, J) be a symplectic manifold with a compatible, (almost)

complex structure J . Then M is Kähler.

Proof: Construct the metric

g (X,Y ) = −ω (JX, Y ) . (5.2)
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Exercise 5.1: Show that the metric defined above (5.2) satisfies

(a) g (X,Y ) = g (Y,X),

(b) g (JX, JY ) = g (X,Y ),

(c) g (X,X) > 0 for all X 6= 0.

Hint: ω is compatible with J .

Thus, g as defined above is a positive-definite Hermitian metric, and since the symplectic

two-form ω is closed, the manifold is (almost) Kähler. This completes the proof.

Theorem 5.2: Any closed (p, q)-form ω can be written locally as

ω = ∂∂̄χ , (5.3)

for some (p− 1, q − 1)-form χ.

Proof: This is just a re-statement of the Poincaré Lemma in complex coordinates. Firstly, note

that

dω = ∂ω + ∂̄ω = 0 , (5.4)

implies that the (p+ 1, q) and (p, q + 1) forms

∂ω = ∂̄ω = 0 , (5.5)

vanish separately. We can write the (p, q) form ω in local coordinates as

ω =
1

(p+ q) !
ωa1...apb̄1...b̄qdz

a1 ∧ . . . dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq , (5.6)

and so

∂ω =
1

(p+ q) !
∂c1ωa1...apb̄1...b̄qdz

c1 ∧ dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq , (5.7)

and similarly for ∂̄ω. We thus have

∂[c1ωa1...ap]b̄1...b̄q = 0 , ∂[c̄1ω|a1...ap|b̄1...b̄q ] = 0 . (5.8)

These then imply by the Poincaré Lemma that locally

ω = ∂∂̄χ , (5.9)

for some (p− 1, q − 1)-form χ(z, z̄).

Although what follows is a simple consequence of the above theorem, it is important enough

for string theorists that I will label it as a “theorem”.
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Theorem 5.3: For a Kähler manifold, the Kähler metric can locally be written as

gab̄ = ∂a∂b̄K , (5.10)

where K(z, z̄) is some scalar function, known as the Kähler potential.

Proof: For a Kähler manifold, the Kähler form is closed and hence can be locally be written as

ωab̄ = i∂a∂b̄K , (5.11)

for some scalar K(z, z̄).1 Recall from chapter 4 that in local coordinates, the fundamental form

is given in terms of the metric as

ω = igab̄
(
dza ⊗ dz̄b − dz̄b ⊗ dza

)
, (5.12)

and hence we see that Kähler metric can expressed in terms of the Kähler potential as

gab̄ = ∂a∂b̄K . (5.13)

This completes our proof.

The Kähler potential is defined locally. Let Ki be the Kähler potential in a patch Ui. On a

non-trivial overlap of two patches Ui ∩Uj 6= ∅, the Kähler potentials Ki and Kj must be related

by a Kähler transformation

Ki (z, z̄) = Kj (z, z̄) + fij (z) + f̄ij (z̄) , (5.14)

where fij (z) is a holomorphic function. This clearly does not change the metric.

Note: In practice we can show that a complex manifold is Kähler by finding a globally defined

Kähler potential (up Kähler transformations) on that complex manifold and then showing that

the resultant Kähler metric is positive definite. Let us use this technique in the following example.

Example 5.2: CPN is a Kähler manifold. We showed in Chapter 3 that CPN is complex by

using an atlas
(
Ui, ξ

a
[i]

)
with coordinates

ξa[i] =
za

zi
, (5.15)

where za are (homogeneous) coordinates of CN+1 defined in the patches Ui consisting of all

1The factor of i is just to make the following equations neater.
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points where zi 6= 0. Now, consider the function

Ki = ln

(
N+1∑
a=1

|ξa[i]|
2

)
, (5.16)

defined on a patch Ui. On the intersection of two patches Ui∩Uj 6= ∅, the coordinates are related

by

ξa[i] =
ξa[j]

ξi[j]
, (5.17)

and hence the functions Ki and Kj are related by

Ki (z, z̄) = Kj (z, z̄)− ln ξi[j] − ln ξ̄i[j] . (5.18)

This is a Kähler transformation and hence we can globally define a metric

gab̄ = ∂a∂b̄Ki = ∂a∂b̄Kj , (5.19)

and similarly for the Kähler form. Here we abused notation and labelled both the complex

coordinates on CN+1, za, and the inhomogeneous complex coordinates on CPN , ξa, by the same

label a. For the CPN case, we really mean a = 1, . . . , N since it is an N -dimensional complex

manifold and clearly ξN+1 = 1 as defined above. This is common abuse of notation.

We need to now show that the metric, called the Fubini-Study metric, is positive definite

on real vectors. Let us evaluate it in a coordinate patch
(
Ui, ξ

a
[i]

)
and let us drop the label i for

the patch. We find

gab̄ =
δab̄
(
1 + |ξ|2

)
− ξ̄aξb

(1 + |ξ|2)
2 . (5.20)

Now let us show that this is positive-definite on TM . Let X ∈ Γ (TM) be a real vector-field,

then we know that

X ā = Xa , (5.21)

and hence

gµνX
µXν =

|X|2+|X|2|ξ|2−|
(
ξ̄X
)
|2

(1 + |ξ|2)
2 . (5.22)

By the Schwarz Inequality we know that

|X|2|ξ|2−|
(
ξ̄X
)
|2> 0 , (5.23)

and thus we find that g is positive definite. This completes the proof that CPN is Kähler.
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Exercise 5.2: Derive the Fubini-Study metric (5.20) from the Kähler potential (5.16) in

the patch UN+1 where it is given by

K = ln
(
1 + ξ1ξ̄1 + . . .+ ξN ξ̄N

)
. (5.24)

5.1 Back to Holonomy

We saw that Hermitian and Kähler metrics have a restricted shape: only their “mixed” compo-

nents gab̄ are non-zero. This strongly constrains the Riemann curvature tensor and hence the

holonomy group as we will see in this subsection.

5.1.1 Connection and curvature of Hermitian manifolds

Let us begin by discussing Hermitian metrics before further imposing that the metric be Kähler

(i.e. that the fundamental form be closed). To study the curvature of a manifold we have to

specify the connection to be used. Usually, we take this to be the Levi-Civita connection which is

the unique metric-compatible torsion-free connection. However, here we will first use a different

connection known as the Chern connection. Let us define it and show it is unique.

Definition: Let (M,J, g) a Hermitian manifold. Then we can construct a connection

that is compatible with the Hermitian metric and the complex structure, i.e.

∇g = ∇J = 0 . (5.25)

This is called a Hermitian connection.

Note: Hermitian connections are not unique!

We need to impose another constraint to obtain a unique connection, known as the Chern

connection.

Theorem 5.4: On a Hermitian manifold there exists a unique Hermitian connection

called the Chern connection with the added property that the anti-holomorphic covari-

ant derivative of a holomorphic vector field is just given by the anti-holomorphic derivative

of the holomorphic vector field, and similarly for the holomorphic covariant derivative of

an anti-holomorphic vector field, i.e. in local complex coordinates

∇āV b = ∂āV
b , ∇aV b̄ = ∂aV

b̄ . (5.26)

Proof: Because ∇J = 0 we find that

Γab
c̄ = 0 , Γāb

c̄ = 0 , Γab̄
c = 0 , Γāb̄

c = 0 . (5.27)
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The extra requirement for the Chern connection then implies that

Γāb
c = 0 , Γab̄

c̄ = 0 , (5.28)

and hence the only non-vanishing components of the connection have “pure indices” (meaning

all of one kind):

Γab
c 6= 0 , Γāb̄

c̄ 6= 0 . (5.29)

Let us now impose that the metric must be covariantly constant. Thus,

∇agbc̄ = ∂agbc̄ − Γab
dgdc̄ = 0 , ∇āgbc̄ = ∂āgbc̄ − Γāc̄

d̄gbd̄ = 0 . (5.30)

We can invert these expressions to find

Γab
c = gcd̄∂agd̄b , Γāb̄

c̄ = gc̄d∂āgdb̄ . (5.31)

This completes our proof by construction.

Exercise 5.3: Show that ∇J = 0 implies (5.27).

Exercise 5.4: Show that for an arbitrary connection Γµν
ρ, the “mixed” components of

the connection are tensors under a holomorphic change of coordinates.

Hint: Recall that under an infinitesimal diffeomorphism xρ → xρ − ξρ, a connection

transforms as δξΓµν
ρ = ∂µ∂νξ

ρ.

We can now show that the only non-zero components of the Riemann tensor are

Rabcd̄ = −∂d̄Γcba , Rāb̄c̄d = −∂dΓc̄b̄a . (5.32)

Exercise 5.5: Using the definition of the Riemann tensor in a local coordinate basis as

Rµνρσ = ∂ρΓσν
µ + Γρλ

µΓσν
λ − (ρ↔ σ) , (5.33)

and the fact that the connection is non-zero only when it has pure indices, show that

Rābµν = 0 , Rab̄µν = 0 , Rabc̄d̄ = 0 , Rāb̄cd = 0 . (5.34)

Also show using (5.31) that

Rabcd = 0 , Rāb̄c̄d̄ = 0 . (5.35)

In ordinary differential geometry, the symmetry properties of the Riemann curvature tensor
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imply that we can only form one tensor (the Ricci tensor) by contracting its indices. However, a

complex structure gives us an alternative way of contracting indices and this allows us to define

the Ricci 2-form.

Definition: Let (M,J, g) be a Hermitian manifold and let us label the components of the

Riemann curvature tensor in local coordinates as Rµνρσ. We define the Ricci form as

R =
1

4
RµνρσJ

ν
µdx

ρ ∧ dxσ . (5.36)

Theorem 5.5: Let (M,J, g) be a Hermitian manifold. Then its Ricci form is given by

R = −i∂∂̄ ln
√
|g| . (5.37)

Proof: We will use local coordinates throughout to evaluate the Ricci form. Observe from (5.32)

that only the mixed components of Rab̄ are non-zero and given by

Rab̄ =
i

2

(
Rccab̄ −Rc̄c̄ab̄

)
. (5.38)

In order to evaluate them, note that

∂µ ln|g|= gνρ∂µgνρ = 2gab̄∂µgab̄ , (5.39)

Let us thus evaluate

Rccab̄ = −∂b̄Γacc = −∂b̄
(
gcd̄∂agd̄c

)
= −∂b̄∂a ln

√
|g| , (5.40)

and similarly

Rc̄c̄ab̄ = ∂a∂b̄ ln
√
|g| . (5.41)

Using these results we find that

Rab̄ = −i∂a∂b̄ ln
√
|g| . (5.42)

This completes the proof.
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Exercise 5.6:
√
|g| is a scalar density and transforms as√

|g| −→
√
|g||Jac| , (5.43)

under a coordinate transformation where Jac is the Jacobian of the coordinate transfor-

mations. Show that

R = −i∂∂̄ ln
√
|g| (5.44)

is nonetheless globally well-defined, i.e. it transforms as a tensor.

Hint: Recall that coordinate transformations are holomorphic.

Let us take a brief excursion to cohomology which we will study in more detail in the next

chapter.

Exercise 5.7: Show that on a complex manifold,

∂∂̄ = −1

2
d
(
∂ − ∂̄

)
. (5.45)

Hint: Use the fact that on a complex manifold d = ∂ + ∂̄.

Using the result (5.45) we see that

R = −i∂∂̄ ln
√
|g| = i

2
d
(
∂ − ∂̄

)
ln
√
|g| . (5.46)

Recall that we call a p-form ω = dκ for some (p− 1)-form κ is exact. This seems to suggest that

R is exact. However, this is not the case since
√
|g| is not a coordinate scalar, as explained in

exercise 5.6. Thus, R is not exact. It is still closed, hence

dR = 0 . (5.47)

As will be made clearer in the next chapter, we can define a cohomology class, called the

Chern class from the Ricci-form.

Definition: The first Chern class c1 is the space of two-forms 1
2πR

′ such that

1

2π
R′ − 1

2π
R = dκ , (5.48)

for some one-form κ, i.e. the difference between R′ and the Ricci-form is exact. This is

often written as:

c1 =

[
1

2π
R
]
. (5.49)
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We will see soon that the first Chern class is the only topological obstruction to having a

Calabi-Yau manifold, i.e. that a Kähler manifold with vanishing first Chern class is Calabi-Yau.

Exercise 5.8: Show that the Ricci form of the Fubini-Study metric of CPN is given by

R = − (N + 1)ω , (5.50)

where ω is the Kähler form of CPN .

Hint: Use the fact that the inverse of the Fubini-Study metric is given by

gab̄ =
(
1 + |ξ|2

) (
δab̄ + ξaξ̄b

)
, (5.51)

and compute

∂ ln
√
|g| = gab̄∂gb̄a . (5.52)

5.1.2 Curvature and connection of Kähler manifolds

Let us now study the connection and curvature on a Kähler manifold.

Theorem 5.6: On a Kähler manifold, the Chern connection is the Levi-Civita connec-

tion.

Proof: Recall that a Kähler manifold has a closed fundamental form ω, i.e.

dω = 0 . (5.53)

From (5.12) we see that in local coordinates this implies

∂agbc̄ − ∂bgac̄ = 0 , ∂āgb̄c − ∂bgāc = 0 . (5.54)

Using this result and the expression for the Chern connection (5.31) we see that

Γab
c = gcd̄∂agd̄b = gcd̄∂bgd̄a = Γba

c , (5.55)

and similarly for Γāb̄
c̄. Hence, the Chern connection has vanishing torsion Γ[ab]

c. However, we

know that there is a unique metric-compatible, torsion-free connection on any manifold: the

Levi-Civita connection. This completes our proof.

Corollary: Let (M,J) be a Kähler manifold. Then the complex structure is covariantly con-

stant (with respect to the Levi-Civita connection).
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Theorem 5.7: Let (M,J, g) be a Kähler manifold. In local coordinates its Ricci tensor

and Ricci form are related by

Rab̄ = −iRab̄ , (5.56)

and all the other components of the Ricci tensor vanish.

Proof: Recall that in local coordinates the Ricci tensor is given by

Rµν = Rρµρν . (5.57)

. From (5.34) and (5.35) we immediately see that the pure components vanish:

Rab = Rāb̄ = 0 . (5.58)

Thus, the only non-zero components are then the mixed ones given by

Rab̄ = Rcacb̄ = −∂b̄Γcac = −∂b̄Γacc , (5.59)

where in the last equality we used the fact that the torsion vanishes. Comparing to the expression

for the Ricci form we find that

Rab̄ = −iRab̄ . (5.60)

This completes the proof.

We can now see why we called R the “Ricci-form”: on a Kähler manifold, it contains the same

information as the Ricci tensor. You may find it strange that this could be true of a symmetric

and antisymmetric tensor. This works here because the pure components of each tensor vanish

so on a (d = 2n)-dimensional manifold they both only contain n2 independent components.

5.1.3 Connection to holonomy

Now that we know the Riemann curvature tensor, we can study the holonomy group of Kähler

manifolds. Recall the definition of the Riemann curvature tensor.

Definition: For any three vector fields X,Y, Z ∈ Γ (TM), the Riemann curvature tensor

is defined as

R (X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (5.61)

In local coordinates this implies for any V ∈ Γ (TM)

[∇µ,∇ν ]V ρ = RρσµνV
σ . (5.62)
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Thus, when parallel transporting the vector around an infinitesimally small loop (which is the

same as taking the commutator of covariant derivatives) any vector gets mapped to

V ′µ = V µ + aρσRνρσ
µV ν , (5.63)

where aρσ depends on the loop chosen.

Theorem 5.8: The holonomy group of a 2n-dimensional Kähler manifold is U(n).

Proof: From (5.63) above we can identify the elements of the Lie algebra of the holonomy group

with the components of the Riemann curvature tensor as

(Mµν)ρ
σ ≡ Rσρµν , (5.64)

where Mµν are the individual Lie algebra generators. These are in general elements of the Lie

algebra of SO(2n). It is an exercise in group theory (see exercise 5.9 below) to show that if

Ma
b̄ = 0 , Mā

b = 0 , (5.65)

then they are elements of U(n). From (5.34),(5.35) we see that this is the case here and hence

the holonomy group of a 2n-dimensional Kähler manifold is U(n). This completes the proof.

Exercise 5.9: Holomorphic transition functions of 2n complex coordinates form the

group U(n) ⊂ SO(2n). By considering the action of the matrix

M =

(
Ma

b Ma
b̄

Mā
b Mā

b̄

)
(5.66)

on the complex coordinates (
za

z̄a

)
, (5.67)

show that holomorphicity requiresMa
b̄ = Mā

b = 0. We can see that the U(n) is embedded

in SO(2n) via the matrices Ma
b and Mā

b̄. Further requiring the matrix M to be real

implies that

Mā
b̄ = Ma

b . (5.68)

Of course, we can write U(n) = SU(n)× U(1). In chapter 1 we saw that we are particularly

interested in SU(n) holonomy. Can we easily see what the U(1) corresponds to?

Theorem 5.9: An n-dimensional Kähler manifold with SU(n) holonomy has vanishing

Ricci tensor.
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Proof: Above we saw that U(n) is embedded in SO(2n) via the matrices Ma
b and Mā

b̄ so that

an element M ∈ SO(2n) can be written as

Mµ
ν =

(
Ma

b 0

0 Mā
b̄

)
. (5.69)

We can now decompose the U(n) generator Ma
b and its complex conjugate Mā

b̄ in terms of a

(traceless) SU(n) generator Ha
b and a U(1) generator θ as follows.

Ma
b = Ha

b + iδa
bθ/n , Mā

b̄ = Hā
b̄ − iδāb̄θ/n . (5.70)

This may be more reminiscent when written in terms of group elements:

Ma
b = Ha

beiθ/n , |I|= 1 . (5.71)

We thus see that the U(1) part corresponds to the trace of Ma
b, i.e.

iθ = Ma
a . (5.72)

Translating this back to the SO(2n) elements we find

θ = −1

2
Jµ

νMν
µ , (5.73)

and hence we can identify the U(1) generator with

θ = −1

2
RσρµνJσ

ρ = −Rµν . (5.74)

We see that the Ricci-form and hence the Ricci-tensor generate the U(1) part of the holon-

omy group of a Kähler manifold. Thus vanishing Ricci-tensor implies SU(n) holonomy. This

completes the proof.
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