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5 Kahler manifolds

In this chapter we will further develop the concepts met in the previous chapter which will lead
us to Kéahler manifolds. This special kind of complex manifolds plays an important role in string
theory. In order to get ready for Calabi-Yau manifolds, we will also discuss the holonomy of
Kahler manifolds.

Let us start by defining a Kéhler manifold.

Definition: Let (M, J) be a complex manifold with Hermitian matrix g and fundamental
2-form w. If w is closed, i.e.
dw=0, (5.1)

then M is called a Kahler manifold, g is called the Kahler metric and w the Kahler

form.

Note: When (M, g,J) is an almost Hermitian manifold with dw = 0 then M is called almost
Kéhler.

Example 5.1: All complex manifolds of 2 (real) dimensions are Kahler. This is because all

complex manifolds are Hermitian and any 2-form w on a 2 dimensional manifold is closed.
Corollary: An (almost) K&hler manifold is a symplectic manifold.

How about the inverse? When is an (almost) complex, symplectic manifold Kéahler? The

answer lies in the compatibility between w and J.

Theorem 5.1: Let (M,w,J) be a symplectic manifold with a compatible, (almost)
complex structure J. Then M is Kahler.

Proof: Construct the metric
g(X)Y)=-w(JX,)Y). (5.2)



Exercise 5.1: Show that the metric defined above (5.2)) satisfies

(a) g(X,Y):g(Y,X),
(b) g(JX,JY) =g(X,Y),
(c) g(X,X) >0 for all X #0.

Hint: w is compatible with J.

Thus, g as defined above is a positive-definite Hermitian metric, and since the symplectic

two-form w is closed, the manifold is (almost) Kéhler. This completes the proof.

Theorem 5.2: Any closed (p, ¢)-form w can be written locally as
w = 00y,

for some (p — 1,q — 1)-form x.

(5.3)

Proof: This is just a re-statement of the Poincaré Lemma in complex coordinates. Firstly, note

that
dw = 0w+ 0w =0,

implies that the (p+ 1,¢) and (p,q + 1) forms

Ow = 0w =0,

vanish separately. We can write the (p, ¢) form w in local coordinates as

1
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and so )
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and similarly for dw. We thus have
NerWay...aplbr..by, = 0 NerWiay...ap(by.by) = 0-
These then imply by the Poincaré Lemma that locally
w = 00y,

for some (p — 1,q — 1)-form x(z, 2).

(5.4)

(5.6)

(5.7)

(5.8)

Although what follows is a simple consequence of the above theorem, it is important enough

for string theorists that I will label it as a “theorem”.



Theorem 5.3: For a Kéhler manifold, the Kéhler metric can locally be written as
9ap = 0aOp K, (5.10)

where K(z, z) is some scalar function, known as the Kéhler potential.

Proof: For a Kahler manifold, the Kahler form is closed and hence can be locally be written as
wap = 10. 05K, (5.11)

for some scalar K (z, Z)H Recall from chapter 4 that in local coordinates, the fundamental form

is given in terms of the metric as
w =g,y (dz" ® dz’ — dz’ @ dz*) , (5.12)
and hence we see that Kahler metric can expressed in terms of the Kéhler potential as
9ap = a0 K . (5.13)
This completes our proof.

The Ké&hler potential is defined locally. Let K; be the Kéhler potential in a patch U;. On a
non-trivial overlap of two patches U; NU; # 0, the Kéhler potentials K; and K; must be related

by a Kéhler transformation
Ki(2,2) = K; (2,2) + fij (2) + fi; () , (5.14)
where f;; (2) is a holomorphic function. This clearly does not change the metric.

Note: In practice we can show that a complex manifold is Kéhler by finding a globally defined
Kaéhler potential (up K&hler transformations) on that complex manifold and then showing that

the resultant Kahler metric is positive definite. Let us use this technique in the following example.

Example 5.2: CPV is a Kéhler manifold. We showed in Chapter 3 that CPY is complex by
using an atlas (Ui, fﬁ]) with coordinates

a

a z
§ip = i (5.15)

where 2% are (homogeneous) coordinates of CV*! defined in the patches U; consisting of all

1The factor of i is just to make the following equations neater.



points where z° # 0. Now, consider the function

N+1
K;=In (Z |g§]|2> , (5.16)
a=1

defined on a patch U;. On the intersection of two patches U; NU; # (), the coordinates are related
by

&
€y = 55] , (5.17)
(4]

and hence the functions K; and K are related by
Ki(2,2) = Kj (2,2) = In&; = In&j), . (5.18)
This is a Kéhler transformation and hence we can globally define a metric
Gui = Qa5 Ky = 05K (5.19)

and similarly for the Kahler form. Here we abused notation and labelled both the complex
coordinates on CV*1, 2% and the inhomogeneous complex coordinates on CPY, €%, by the same
label a. For the CPV case, we really mean a = 1,..., N since it is an N-dimensional complex
manifold and clearly é¥+! = 1 as defined above. This is common abuse of notation.

We need to now show that the metric, called the Fubini-Study metric, is positive definite
on real vectors. Let us evaluate it in a coordinate patch (Ui, Eﬁ.]) and let us drop the label ¢ for
the patch. We find
a5 (1+ &%) — &l

1+
Now let us show that this is positive-definite on TM. Let X € I'(T'M) be a real vector-field,

then we know that

(5.20)

9ab =

X=X, (5.21)
and hence , b
X X —|(€X
e~ XPHXPIEP-1(EX) -~
(1+1€1)
By the Schwarz Inequality we know that
[ X2E[P | (€X) >0, (5.23)

and thus we find that ¢ is positive definite. This completes the proof that CPY is Kahler.



Exercise 5.2: Derive the Fubini-Study metric (5.20) from the Kéhler potential ((5.16)) in
the patch Un41 where it is given by

K=In(1+&¢& +...+&VeN). (5.24)

5.1 Back to Holonomy

We saw that Hermitian and K&hler metrics have a restricted shape: only their “mixed” compo-
nents g¢,; are non-zero. This strongly constrains the Riemann curvature tensor and hence the

holonomy group as we will see in this subsection.

5.1.1 Connection and curvature of Hermitian manifolds

Let us begin by discussing Hermitian metrics before further imposing that the metric be Kahler
(i.e. that the fundamental form be closed). To study the curvature of a manifold we have to
specify the connection to be used. Usually, we take this to be the Levi-Civita connection which is
the unique metric-compatible torsion-free connection. However, here we will first use a different

connection known as the Chern connection. Let us define it and show it is unique.

Definition: Let (M, J,g) a Hermitian manifold. Then we can construct a connection

that is compatible with the Hermitian metric and the complex structure, i.e.
Vg=VJ=0. (5.25)

This is called a Hermitian connection.

Note: Hermitian connections are not unique!
We need to impose another constraint to obtain a unique connection, known as the Chern

connection.

Theorem 5.4: On a Hermitian manifold there exists a unique Hermitian connection
called the Chern connection with the added property that the anti-holomorphic covari-
ant derivative of a holomorphic vector field is just given by the anti-holomorphic derivative
of the holomorphic vector field, and similarly for the holomorphic covariant derivative of

an anti-holomorphic vector field, i.e. in local complex coordinates

VaVl =0V, V.V =09,V". (5.26)

Proof: Because VJ = 0 we find that

Iy’ = 0, Fa© = 0, FaEC =0, F&EC =0. (527)



The extra requirement for the Chern connection then implies that
=0, =0, (5.28)

and hence the only non-vanishing components of the connection have “pure indices” (meaning
all of one kind):
T #0, It #0. (5.29)

Let us now impose that the metric must be covariantly constant. Thus,
Vagve = Oagoe — Fabdgdé =0, Vagve = Oagve — Faédgbgi =0. (5.30)
We can invert these expressions to find
Tor® = 9°0ugz,  Tas" = 9" Oadas - (5.31)

This completes our proof by construction.

Exercise 5.3: Show that VJ = 0 implies (5.27).

Exercise 5.4: Show that for an arbitrary connection I',,”, the “mixed” components of
the connection are tensors under a holomorphic change of coordinates.
Hint: Recall that under an infinitesimal diffeomorphism z” — x” — &P, a connection

transforms as §¢1,,,°7 = 0,,0,&°.

We can now show that the only non-zero components of the Riemann tensor are

R%g=—0La", R%eq = —0aT5" . (5.32)

Exercise 5.5: Using the definition of the Riemann tensor in a local coordinate basis as
R po = 0,05, " + T ppaFTp,* — (p & 0) (5.33)
and the fact that the connection is non-zero only when it has pure indices, show that
R, =0, R%,, =0, R%:3=0, B 0= (5.34)
Also show using that

R%cqa =0, R%eq=0. (5.35)

In ordinary differential geometry, the symmetry properties of the Riemann curvature tensor



imply that we can only form one tensor (the Ricci tensor) by contracting its indices. However, a
complex structure gives us an alternative way of contracting indices and this allows us to define
the Ricci 2-form.

Definition: Let (M, J, g) be a Hermitian manifold and let us label the components of the

Riemann curvature tensor in local coordinates as R*,,,. We define the Ricci form as

1
R = ZR“,,pUJVdeP Adx? . (5.36)

Theorem 5.5: Let (M, J, g) be a Hermitian manifold. Then its Ricci form is given by

R = —iddIn/]g]. (5.37)

Proof: We will use local coordinates throughout to evaluate the Ricci form. Observe from ([5.32))

that only the mixed components of R ; are non-zero and given by

i c c
RaE = 5 (R cab R EaE) . (538)
In order to evaluate them, note that
O nlgl= 6" 890p = 29" 0 gas (5.39)
Let us thus evaluate
R s = ~03Tac” = ~05 (9°"0u94) = ~ 030 /I (5.40)
and similarly
R0 = 0,05 In /g . (5.41)
Using these results we find that
Rap = —10,05In+/|g]| . (5.42)

This completes the proof.



Exercise 5.6: /|g| is a scalar density and transforms as

Vgl — Vgl Jac|, (5.43)

under a coordinate transformation where Jac is the Jacobian of the coordinate transfor-

mations. Show that

R = —id01In+/|g]| (5.44)

is nonetheless globally well-defined, i.e. it transforms as a tensor.

Hint: Recall that coordinate transformations are holomorphic.

Let us take a brief excursion to cohomology which we will study in more detail in the next

chapter.

Exercise 5.7: Show that on a complex manifold,
_ 1 _
00 = —5d (0-9) . (5.45)

Hint: Use the fact that on a complex manifold d = 9 + 0.

Using the result ((5.45]) we see that

R = —iddIn+/|g| = %d(afé) In+/|g|. (5.46)

Recall that we call a p-form w = dk for some (p — 1)-form & is exact. This seems to suggest that
R is exact. However, this is not the case since 1/|g| is not a coordinate scalar, as explained in

exercise 5.6. Thus, R is not exact. It is still closed, hence
dR=0. (5.47)

As will be made clearer in the next chapter, we can define a cohomology class, called the

Chern class from the Ricci-form.

Definition: The first Chern class c; is the space of two-forms %R’ such that

1 1

—R ——R=d 5.48
2w 2w o ( )
for some one-form x, i.e. the difference between R’ and the Ricci-form is exact. This is

often written as: )
c = [’R] . (5.49)




We will see soon that the first Chern class is the only topological obstruction to having a

Calabi-Yau manifold, i.e. that a Kahler manifold with vanishing first Chern class is Calabi-Yau.

Exercise 5.8: Show that the Ricci form of the Fubini-Study metric of CPY is given by
R=—-(N+1w, (5.50)

where w is the Kihler form of CP.

Hint: Use the fact that the inverse of the Fubini-Study metric is given by
g = (1+[¢P) (% + °€) | (5.51)

and compute
dn+/|g| = g**dgs, - (5.52)

5.1.2 Curvature and connection of Kahler manifolds

Let us now study the connection and curvature on a Kahler manifold.

Theorem 5.6: On a Kéhler manifold, the Chern connection is the Levi-Civita connec-

tion.

Proof: Recall that a Kédhler manifold has a closed fundamental form w, i.e.
dw=20. (5.53)
From we see that in local coordinates this implies
Oagve — Ogac =0,  OaGpe — OGac = 0. (5.54)
Using this result and the expression for the Chern connection we see that
Tab” = 9°’0ug, = 9°"09d0 = Do, (5.55)

and similarly for T',;;¢. Hence, the Chern connection has vanishing torsion [(qp°. However, we
know that there is a unique metric-compatible, torsion-free connection on any manifold: the

Levi-Civita connection. This completes our proof.

Corollary: Let (M, J) be a Kahler manifold. Then the complex structure is covariantly con-

stant (with respect to the Levi-Civita connection).



Theorem 5.7: Let (M, J, g) be a Kéhler manifold. In local coordinates its Ricci tensor
and Ricci form are related by
RaB = 7iRal§a (556)

and all the other components of the Ricci tensor vanish.

Proof: Recall that in local coordinates the Ricci tensor is given by
Ry, = Ry - (5.57)
. From and we immediately see that the pure components vanish:
Ruy = R;;=0. (5.58)
Thus, the only non-zero components are then the mixed ones given by
Ry = Rfop = —0plca” = —0pTac” (5.59)

where in the last equality we used the fact that the torsion vanishes. Comparing to the expression
for the Ricci form we find that
R =—1R,;- (5.60)

This completes the proof.

We can now see why we called R the “Ricci-form”: on a Kahler manifold, it contains the same
information as the Ricci tensor. You may find it strange that this could be true of a symmetric
and antisymmetric tensor. This works here because the pure components of each tensor vanish

so on a (d = 2n)-dimensional manifold they both only contain n? independent components.

5.1.3 Connection to holonomy

Now that we know the Riemann curvature tensor, we can study the holonomy group of Kéhler

manifolds. Recall the definition of the Riemann curvature tensor.

Definition: For any three vector fields X,Y,Z € T' (T M), the Riemann curvature tensor
is defined as
R(X,)Y)Z =[Vx,Vy|Z -V xyZ. (5.61)

In local coordinates this implies for any V € I' (T M)

[vuv vl/] VP = Rpap,uvg . (562)
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Thus, when parallel transporting the vector around an infinitesimally small loop (which is the

same as taking the commutator of covariant derivatives) any vector gets mapped to
V" = VHE +aP" R, VY, (5.63)

where a”? depends on the loop chosen.

Theorem 5.8: The holonomy group of a 2n-dimensional Kéhler manifold is U(n).

Proof: From (5.63) above we can identify the elements of the Lie algebra of the holonomy group

with the components of the Riemann curvature tensor as

(M,uu) 7= Rgp;w, (564)

p

where M, are the individual Lie algebra generators. These are in general elements of the Lie

algebra of SO(2n). It is an exercise in group theory (see exercise 5.9 below) to show that if
M=o, M;®*=0, (5.65)

then they are elements of U(n). From (5.34)),(5.35)) we see that this is the case here and hence

the holonomy group of a 2n-dimensional Ké&hler manifold is U(n). This completes the proof.

Exercise 5.9: Holomorphic transition functions of 2n complex coordinates form the

group U(n) C SO(2n). By considering the action of the matrix

Mpb M,}P
M = Vb B (5.66)

(;Z) : (5.67)

show that holomorphicity requires M,b = M," = 0. We can see that the U(n) is embedded
in SO(2n) via the matrices M,” and M;®. Further requiring the matrix M to be real

on the complex coordinates

implies that

M;P = Mo, (5.68)

Of course, we can write U(n) = SU(n) x U(1). In chapter 1 we saw that we are particularly

interested in SU(n) holonomy. Can we easily see what the U(1) corresponds to?

Theorem 5.9: An n-dimensional Kéhler manifold with SU(n) holonomy has vanishing

Ricci tensor.

11



Proof: Above we saw that U(n) is embedded in SO(2n) via the matrices M,? and M;® so that

an element M € SO(2n) can be written as

M 0
MY = - 5.69
. ( 0 Mab> (569

We can now decompose the U(n) generator M," and its complex conjugate M;? in terms of a

(traceless) SU(n) generator H,” and a U(1) generator 6 as follows.
M, = H,' +i6,°0/n,  Mg" = Hz" —i5,°0/n. (5.70)
This may be more reminiscent when written in terms of group elements:
M,b = H,l e |I=1. (5.71)
We thus see that the U(1) part corresponds to the trace of M,°, i.e.
i0 = M," . (5.72)
Translating this back to the SO(2n) elements we find
o — —%J,/Ml,“ , (5.73)
and hence we can identify the U(1) generator with
0= —%R",,WJUP =R, (5.74)

We see that the Ricci-form and hence the Ricci-tensor generate the U(1) part of the holon-
omy group of a K&hler manifold. Thus vanishing Ricci-tensor implies SU(n) holonomy. This

completes the proof.
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