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7 Cohomology on complex and Kahler manifolds

In this chapter we will study cohomology on complex and especially K&hler manifolds, where we
will refine deRham cohomology using the Dolbeault operators we introduced when first encoun-

tering complex manifolds.

7.1 Dolbeault cohomology

We saw that on complex manifolds we can define nilpotent operators @ and 9. We can use these
to define two kinds of so-called Dolbeault cohomologies: one for @ and one for . Convention has
it that the cohomology of 9 is usually called the “Dolbeault” cohomology. Let us first study this
cohomology for complex manifolds before specialising to K&hler manifolds. As the construction
is largely analogous to that for deRham cohomology most of the details are left as exercises.

We begin by defining an inner product for p, g-forms.

Definition: Let (M, J, g) be a complex manifold with Hermitian metric g. Then we

define (’)p,q to be an inner product of p, g-forms, i.e.
(2)pg: T(M) @ Q1 (M) — C, (7.1)
such that for o, § € QP9 (M) we have

= [ aned -

Here 3 is the complex conjugate of /3.




Theorem 7.1: The inner product (), , satisfies
(o), , >0, (7.3)
for all a € QP (M), with equality iff & = 0.
Proof: This follows immediately from the result of the exercise below.
Exercise 7.1: Use the fact that on a 2n-dimensional complex manifold we can write
eal-uanBln»Bn — eal...anegl...gn , (74)
where €¥1:9n = ¢@1n = 4|g[1/4  with the sign depending whether (ay,...,a,) is an
even or odd permutation of (1,...,n), to show that
(o, Bpq = /M aalm%gl,,,gqﬁ_al"'a”bl"'bq\/E d"zd"z . (7.5)
We can now define the adjoint 0 of the operator 0.
Definition: The adjoint 9 : QP9 (M) — QP9=1 (M) is defined as
(Oé, aﬁ)p’q = (8Ta7ﬂ)p,q ) (76)
for all a € QP9 (M) and B € QP91 (M).
Theorem 7.2:
Ol = — %0 (7.7)
Exercise 7.2: Prove the above.
Hint: You may wish to first show that for any p, ¢-form o € Q79 (M)
d(anB)=danB+ (-1 T andp. (7.8)

We can now introduce a Hodge operator as before and discuss harmonic forms with respect
to 0.



Definition: Define
Ag: QP9 (M) — QP9 (M), (7.9)

by
Ay =00" +910. (7.10)

Let us introduce some more notation.

Definition:
o 72 (Zg’q) is the space of (co-)closed p, g-forms with respect to 0 .
. Bg’q (Bg’q) is the space of (co-)exact p, g-forms with respect to 0 .

o HYY =Z5"/BEY is the (p, g)-th cohomology group with respect to 0.

e 1% is the space of harmonic p, g-forms with respect to A .

Theorem 7.3: We can perform a Hodge decomposition with respect to the Dolbeault

operators, i.e. we can write any p, g-form w as
w=a+9dB+d, (7.11)
where o € H, i.e. Aga = 0. Thus, we can write as before

HY =12 B @ BEI. (7.12)

Corollary: H27 is isomorphic to H2Y.
b 8

For a complex manifold the Dolbeault cohomology classes and deRham cohomology classes are
different. In particular, the former depend on the choice of complex structure (as this determines
what we call (p, ¢)-forms) while deRham cohomology is topological.

However, for a Kéhler manifold the two cohomologies are equivalent. This can be seen by

explicitly computing the three Laplacians Az, Ap and A. One finds

Theorem 7.4: For a Kéhler manifold,

A=2A5=27y. (7.13)

Proof: See exercises below.



Exercise 7.3: Show that for a Kahler manifold 8t can be written in terms of the covariant

derivative

1
d’rw 3 (_1) +p+q

c _ a a =b by _
—mvw JAZTN N2 NAZT AL N (7.14)

al...apclsl...bq,

Exercise 7.4: Prove (7.13) using the result of the previous exercise.

Theorem 7.5: Let (M, J, g) be a Kéhler manifold. Then

H=PHit. (7.15)

=0

Definition: We define the Hodge numbers,
hPe = dimHg’q , (7.16)

to be the dimension of the (p, ¢)-th cohomology group.

Using the decomposition of the deRham cohomology groups in terms of Dolbeault cohomology
groups we find:
Corollary: Let (M, J,g) be a K&hler manifold. Then the Betti numbers and Hodge numbers
satisfy

= R (7.17)
=0

Theorem 7.6: On a 2n-dimensional complex manifold, the Hodge numbers satisfy the

following identities

P
hik = phed |

1
hj,k — hn—j,n—k ) (7 8)

Proof: The first identity arises because the complex conjugate of a harmonic (p, ¢)-form is a
harmonic (g, p)-form. The second comes from applying Hodge duality.

It is customary to arrange the Hodge numbers in a so-called Hodge diamond. For a 2n-



dimensional complex manifold, the Hodge diamond is given by

h0,0
hl,O hO,l
h2’0 hl’l h0,2
B0 pr—1.1 - pln—1 RO (7.19)
hn,n—2 hn—l,n—l hn—27n
hn,nfl hnfl,n
hn,n

Because of the identities discussed not all elements are independent. For example, for a 1-

dimensional complex manifold the Hodge diamond is given by
1,00
h10 RO (7.20)

and we see there are only 2 independent hodge numbers. Similarly for a 2-dimensional complex

manifold we would have

h0,0
hl,O hl,O
h2:0 bt h20 (7.21)
hl 0 hl,O
h0,0

and there are only 4 independent Hodge numbers.

7.2 Hodge numbers of Kahler manifolds

Let us now consider Kahler manifolds in particular. We can find some topological obstructions

to Kéhler manifolds by the following considerations.

Theorem 7.7: The Kéahler form is harmonic.

Proof: Recall that on a Kdhler manifold there exists a globally well-defined closed (1, 1)-form
w, the Kahler form, i.e.
dw = 0. (7.22)

We also saw that the connection is compatible with the Kahler form, i.e.

Vw=0. (7.23)



From the definition of d in the previous chapter we see that w is co-closed. Thus w is harmonic

and this completes our proof.

Corollary: h'! > 0 and hence b? > 0.

Definition: On a Kahler manifold, the Kahler class [w] is the cohomology class of the

Kahler form w.

Theorem 7.8: On a compact, closed Kihler manifold R** > 0,V 0 < k < n, and hence
k>0, V0<Ek<n.

Proof: Using the Kéhler form we can form a closed (k, k)-form by wedging the Kéhler form
with itself & times:
W=wAL AW, (7.24)

Since dw = 0 we have Jw = 0 and hence
ok =0. (7.25)
Thus, w* € Hg’k. Let us assume that it vanishes in the Dalboult cohomology class, i.e. that

Wk = da, (7.26)

k-1

for some o € . Now note that on a 2n-dimensional Kahler manifold w™ = n! e where € is

the volume form. You can see this easily in normal complex coordinates. Then we can write

1 1 1 -
e=—w' = —wFAWTF = Zda AW TR, (7.27)
n! n! n!

n—k

However, o A w is a (n,n — 1)-form and so da A w" ™% = 0. Thus,

1
€= Eda AwF, (7.28)

But if we integrate the volume form over the manifold we get the volume

V:/e:/daAw”*kzo (7.29)

k

by Stoke’s Theorem. But this is not possible for a compact closed manifold and hence w” must

not be in a vanishing Dalboult cohomology class. This completes the proof.



Theorem 7.9: On a Kihler manifold, all odd Betti numbers b2¢—1 (forall0 < 2k—1<n)

are even.
Proof:

2k—1 2k—1

b2k1 Zh]ﬂcjl Zh32k]1+zhj2kjl
7=0
k—1
Z h] 2k—j—1 + Z h/c+1 k—j—1 (730)
=0 =0
k—1 k—1

_ (hj,Qk—j—l n h2k—j—1,j) _ 22 B2k =1

J=0 j=0

where in the penultimate equality we used the relabelling j — k — 1 — j.
Topological requirements such as these are an easy way to quickly determine whether a
manifold is Kahler or not.

Example 7.1: Products of odd spheres, M, s = S*"*1 x §25+1 are not Kihler.

Proof: We will show that there are no harmonic 2-forms on M, ;. If a harmonic 2-form w existed

on M™* it would have to be of the form
w=as+a; /\514-52, (7.31)

where ag € H2(S? 1), By € H2(S*T), ay € HI(S* 1) and 81 € HP(S?*T!) are harmonic 2-
forms and 1-forms on the respective spheres. However, we have seen in chapter 6 that n-spheres

S™ have bg = b, = 1 and all other Betti numbers vanish. Thus w = 0. This completes the proof.

Before moving on to Calabi-Yau manifolds, let us quickly re-examine the first Chern class.
Recall that
—R], (7.32)

where R = —i8dIn /9 is the Ricci-form.

Theorem 7.10: Under a smooth variation of the metric g, — g/’w = guv + 69, the

first Chern class is invariant.

Proof: Under the variation, the Ricci form becomes

R =R - %aé (g™ gn) - (7.33)



Now recall that 89 = %d (6 - 5) and thus we see that
R =R —-dA, (7.34)

where A = i' (5‘ — 5) G0 Gmn is a well-defined 1-form since g"™"d¢.y is a coordinate scalar.

Exercise 7.5: Show that under a smooth variation of the metric, the Ricci form trans-

forms as in equation (|7.33)).

We are now in a strong position to study Calabi-Yau manifolds which will be the topic of our

final lecture.
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