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7 Cohomology on complex and Kähler manifolds

In this chapter we will study cohomology on complex and especially Kähler manifolds, where we

will refine deRham cohomology using the Dolbeault operators we introduced when first encoun-

tering complex manifolds.

7.1 Dolbeault cohomology

We saw that on complex manifolds we can define nilpotent operators ∂ and ∂̄. We can use these

to define two kinds of so-called Dolbeault cohomologies: one for ∂ and one for ∂̄. Convention has

it that the cohomology of ∂̄ is usually called the “Dolbeault” cohomology. Let us first study this

cohomology for complex manifolds before specialising to Kähler manifolds. As the construction

is largely analogous to that for deRham cohomology most of the details are left as exercises.

We begin by defining an inner product for p, q-forms.

Definition: Let (M,J, g) be a complex manifold with Hermitian metric g. Then we

define ( , )p,q to be an inner product of p, q-forms, i.e.

( , )p,q : Ωp,q (M)⊗ Ωp,q (M) −→ C , (7.1)

such that for α , β ∈ Ωp,q (M) we have

(α, β)p,q =

∫
M

α ∧ ?β̄ . (7.2)

Here β̄ is the complex conjugate of β.
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Theorem 7.1: The inner product ( , )p,q satisfies

(α, α)p,q ≥ 0 , (7.3)

for all α ∈ Ωp,q (M), with equality iff α = 0.

Proof: This follows immediately from the result of the exercise below.

Exercise 7.1: Use the fact that on a 2n-dimensional complex manifold we can write

εa1...anb̄1...b̄n = εa1...anεb̄1...b̄n , (7.4)

where εa1...an = εā1...ān = ±|g|1/4, with the sign depending whether (a1, . . . , an) is an

even or odd permutation of (1, . . . , n), to show that

(α, β)p,q =

∫
M

αa1...apb̄1...b̄q β̄
a1...apb̄1...b̄q

√
g dnzdnz̄ . (7.5)

We can now define the adjoint ∂̄† of the operator ∂̄.

Definition: The adjoint ∂̄† : Ωp,q (M) −→ Ωp,q−1 (M) is defined as

(
α, ∂̄β

)
p,q

=
(
∂̄†α, β

)
p,q

, (7.6)

for all α ∈ Ωp,q (M) and β ∈ Ωp,q−1 (M).

Theorem 7.2:

∂̄† = − ? ∂̄ ? . (7.7)

Exercise 7.2: Prove the above.

Hint: You may wish to first show that for any p, q-form α ∈ Ωp,q (M)

∂̄ (α ∧ β) = ∂̄α ∧ β + (−1)
p+q

α ∧ ∂̄β . (7.8)

We can now introduce a Hodge operator as before and discuss harmonic forms with respect

to ∂̄.
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Definition: Define

∆∂̄ : Ωp,q (M) −→ Ωp,q (M) , (7.9)

by

∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ . (7.10)

Let us introduce some more notation.

Definition:

• Zp,q
∂̄

(Z̄p,q
∂̄

) is the space of (co-)closed p, q-forms with respect to ∂̄ .

• Bp,q
∂̄

(B̄p,q
∂̄

) is the space of (co-)exact p, q-forms with respect to ∂̄ .

• Hp,q

∂̄
= Zp,q

∂̄
/Bp,q

∂̄
is the (p, q)-th cohomology group with respect to ∂̄.

• Hp,q
∂̄

is the space of harmonic p, q-forms with respect to ∆∂̄ .

Theorem 7.3: We can perform a Hodge decomposition with respect to the Dolbeault

operators, i.e. we can write any p, q-form ω as

ω = α+ ∂̄β + ∂̄†γ , (7.11)

where α ∈ Hp,q
∂̄

, i.e. ∆∂̄α = 0. Thus, we can write as before

Hp,q

∂̄
= Hp,q

∂̄
⊕Bp,q

∂̄
⊕ B̄p,q

∂̄
. (7.12)

Corollary: Hp,q
∂̄

is isomorphic to Hp,q

∂̄
.

For a complex manifold the Dolbeault cohomology classes and deRham cohomology classes are

different. In particular, the former depend on the choice of complex structure (as this determines

what we call (p, q)-forms) while deRham cohomology is topological.

However, for a Kähler manifold the two cohomologies are equivalent. This can be seen by

explicitly computing the three Laplacians ∆∂̄ , ∆∂ and ∆. One finds

Theorem 7.4: For a Kähler manifold,

∆ = 2∆∂̄ = 2∆∂ . (7.13)

Proof: See exercises below.
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Exercise 7.3: Show that for a Kähler manifold ∂̄† can be written in terms of the covariant

derivative

d†ω =
(−1)

1+p+q

p! (q − 1) !
∇cωa1...apcb̄1...b̄q−1

dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq−1 . (7.14)

Exercise 7.4: Prove (7.13) using the result of the previous exercise.

Theorem 7.5: Let (M,J, g) be a Kähler manifold. Then

Hk =

k⊕
j=0

Hj,k−j
∂̄

. (7.15)

Definition: We define the Hodge numbers,

hp,q = dimHp,q

∂̄
, (7.16)

to be the dimension of the (p, q)-th cohomology group.

Using the decomposition of the deRham cohomology groups in terms of Dolbeault cohomology

groups we find:

Corollary: Let (M,J, g) be a Kähler manifold. Then the Betti numbers and Hodge numbers

satisfy

bk =
∑
j=0

hj,k−j . (7.17)

Theorem 7.6: On a 2n-dimensional complex manifold, the Hodge numbers satisfy the

following identities

hj,k = hk,j ,

hj,k = hn−j,n−k .
(7.18)

Proof: The first identity arises because the complex conjugate of a harmonic (p, q)-form is a

harmonic (q, p)-form. The second comes from applying Hodge duality.

It is customary to arrange the Hodge numbers in a so-called Hodge diamond. For a 2n-
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dimensional complex manifold, the Hodge diamond is given by

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...
...

. . .

hn,0 hn−1,1 · · · h1,n−1 h0,n

. . .
...

...

hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

. (7.19)

Because of the identities discussed not all elements are independent. For example, for a 1-

dimensional complex manifold the Hodge diamond is given by

h0,0

h1,0 h1,0

h0,0

, (7.20)

and we see there are only 2 independent hodge numbers. Similarly for a 2-dimensional complex

manifold we would have
h0,0

h1,0 h1,0

h2,0 h1,1 h2,0

h1,0 h1,0

h0,0

, (7.21)

and there are only 4 independent Hodge numbers.

7.2 Hodge numbers of Kähler manifolds

Let us now consider Kähler manifolds in particular. We can find some topological obstructions

to Kähler manifolds by the following considerations.

Theorem 7.7: The Kähler form is harmonic.

Proof: Recall that on a Kähler manifold there exists a globally well-defined closed (1, 1)-form

ω, the Kähler form, i.e.

dω = 0 . (7.22)

We also saw that the connection is compatible with the Kähler form, i.e.

∇ω = 0 . (7.23)
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From the definition of d† in the previous chapter we see that ω is co-closed. Thus ω is harmonic

and this completes our proof.

Corollary: h1,1 > 0 and hence b2 > 0.

Definition: On a Kähler manifold, the Kähler class [ω] is the cohomology class of the

Kähler form ω.

Theorem 7.8: On a compact, closed Kähler manifold hk,k > 0, ∀ 0 ≤ k ≤ n, and hence

b2k > 0, ∀ 0 ≤ k ≤ n.

Proof: Using the Kähler form we can form a closed (k, k)-form by wedging the Kähler form

with itself k times:

ωk = ω ∧ . . . ∧ ω . (7.24)

Since dω = 0 we have ∂̄ω = 0 and hence

∂̄ωk = 0 . (7.25)

Thus, ωk ∈ Hk,k

∂̄
. Let us assume that it vanishes in the Dalboult cohomology class, i.e. that

ωk = ∂̄α , (7.26)

for some α ∈ Ωk,k−1. Now note that on a 2n-dimensional Kähler manifold ωn = n! ε where ε is

the volume form. You can see this easily in normal complex coordinates. Then we can write

ε =
1

n!
ωn =

1

n!
ωk ∧ ωn−k =

1

n!
∂̄α ∧ ωn−k . (7.27)

However, α ∧ ωn−k is a (n, n− 1)-form and so ∂α ∧ ωn−k = 0. Thus,

ε =
1

n!
dα ∧ ωn−k , (7.28)

But if we integrate the volume form over the manifold we get the volume

V =

∫
ε =

∫
dα ∧ ωn−k = 0 (7.29)

by Stoke’s Theorem. But this is not possible for a compact closed manifold and hence ωk must

not be in a vanishing Dalboult cohomology class. This completes the proof.
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Theorem 7.9: On a Kähler manifold, all odd Betti numbers b2k−1 (for all 0 ≤ 2k−1 ≤ n)

are even.

Proof:

b2k−1 =

2k−1∑
j=0

hj,2k−j−1 =

k−1∑
j=0

hj,2k−j−1 +

2k−1∑
j=k

hj,2k−j−1

=

k−1∑
j=0

hj,2k−j−1 +

k−1∑
j=0

hk+1,k−j−1

=

k−1∑
j=0

(
hj,2k−j−1 + h2k−j−1,j

)
= 2

k−1∑
j=0

hj,2k−j−1 ,

(7.30)

where in the penultimate equality we used the relabelling j → k − 1− j.
Topological requirements such as these are an easy way to quickly determine whether a

manifold is Kähler or not.

Example 7.1: Products of odd spheres, Mr,s = S2r+1 × S2s+1, are not Kähler.

Proof: We will show that there are no harmonic 2-forms on Mr,s. If a harmonic 2-form ω existed

on Mr,s it would have to be of the form

ω = α2 + α1 ∧ β1 + β2 , (7.31)

where α2 ∈ H2(S2r+1), β2 ∈ H2(S2s+1), α1 ∈ H1(S2r+1) and β1 ∈ H1(S2s+1) are harmonic 2-

forms and 1-forms on the respective spheres. However, we have seen in chapter 6 that n-spheres

Sn have b0 = bn = 1 and all other Betti numbers vanish. Thus ω = 0. This completes the proof.

Before moving on to Calabi-Yau manifolds, let us quickly re-examine the first Chern class.

Recall that

c1 = [
1

2π
R] , (7.32)

where R = −i∂∂̄ ln
√
g is the Ricci-form.

Theorem 7.10: Under a smooth variation of the metric gµν → g′µν = gµν + δgµν the

first Chern class is invariant.

Proof: Under the variation, the Ricci form becomes

R′ = R− i

2
∂∂̄ (gmnδgmn) . (7.33)
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Now recall that ∂∂̄ = 1
2d
(
∂ − ∂̄

)
and thus we see that

R′ = R− dA , (7.34)

where A = i
4

(
∂ − ∂̄

)
gmnδgmn is a well-defined 1-form since gmnδgmn is a coordinate scalar.

Exercise 7.5: Show that under a smooth variation of the metric, the Ricci form trans-

forms as in equation (7.33).

We are now in a strong position to study Calabi-Yau manifolds which will be the topic of our

final lecture.
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