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8 Calabi-Yau manifolds

We are now finally in a position to discuss Calabi-Yau manifolds. We will begin by defining
these. There are in fact several different equivalent definitions which we hope to understand by

the end of this chapter. We will conclude with some examples.

8.1 Yau’s Theorem

Let us begin by expanding on what we have just learnt in the previous chapter.

Theorem 8.1: If a Kihler manifold admits a Ricci-flat metric its first Chern class

vanishes.

Proof: Let g be the Ricci-flat metric and let us assume the Kéhler manifold admits a different,
not necessarily Ricci-flat, metric ¢’. Then by Theorem 7.10 we know that the Ricci-form of the

two metrics is related by

R(g") = R(g) — dA. (8.1)

Since R(g) = 0 we see that R(g’) vanishes in the cohomology class and hence ¢; = 0.

Corollary: CP" does not admit a Ricci-flat metric.

Proof: Recall from exercise 5.8 that on CPY the Ricci form is given by
R=-—(N+1w, (8.2)

where w is the Kahler form. We saw in chapter 7 that the Kéhler form is harmonic. This implies

it is not exact and neither is R. Hence ¢; # 0 and there cannot be a Ricci-flat metric.

We see that c¢; is a topological obstruction to having a Ricci-flat metric on a Ké&hler manifold.

Calabi conjectured and Yau proved that this is the only topological obstruction.



(Yau’s) Theorem 8.2: Given a Kéahler manifold (M, g,w), let R be any (1, 1)-form
representing the first Chern class. Then there exists a unique metric ¢’ on M with Kéhler

form w’ in the same Kahler class as w whose Ricci-form is R.

We will not prove the theorem here. However, notice that as a special case of the theorem
we find the following.
Corollary: Let (M, g,w) be a K&hler manifold with ¢; = 0. Then there exists a unique Ricci-flat

metric ¢ on M with Kahler form w’ in the same Kahler class as w.

This allows us to define a Calabi-Yau manifold.

Definition: A Calabi-Yau manifold is a compact Kéhler manifold with vanishing first

Chern class.

Theorem 8.3: A 2n-dimensional Calabi-Yau manifold is a Kéahler manifold with the

following equivalent properties:
e It has vanishing first Chern class.
e It admits a Ricci-flat metric.
e It admits a metric whose holonomy group is (a subgroup of) SU(N).

e There is a unique (up to a constant) holomorphic and nowhere vanishing (n, 0)-form
Q.

It admits a pair of globally well-defined covariantly constant spinors.

We have already shown that a Ricci-flat metric implies ¢; = 0 and stated the converse in the
form of Yau’s Theorem. We have proven the equivalence of SU(N) holonomy and a Ricci-flat
metric in chapter 5. Here we will only prove that a holomorphic and nowhere vanishing (n,0)-
form implies Calabi-Yau although the other equivalences are discussed in Candelas’ lecture notes

as well as partially in Green, Schwarz, Witten.

Theorem 8.4: A compact 2n-dimensional Kahler manifold with a nowhere vanishing

holomorphic (n,0)-form € is Calabi-Yau.

Proof: An (n,0)-form Q € Q9 has to be proportional to the n—dimensional alternating

symbol 7, ...a, = ﬁﬁal...aw Since the (n, 0)-form is holomorphic we can write

Qalman = f(z)nal‘..an . (83)

Using a Hermitian metric on the Kahler manifold, we can form the globally well-defined coordi-



nate scalar
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Inverting this expression we find
Vi = s (8.5)
€22

Recall that the Ricci-form is given by

R =—i00In /9. (8.6)
Plugging in into this formula we see that

R = i00n||Q|?. (8.7)

But as we said ||Q2||? is a globally well-defined coordinate scalar and thus R is exact. This implies

c1 = 0 and completes the proof.

This is a very important theorem since it is often easy to find Calabi-Yau manifolds by trying
to construct a nowhere vanishing holomorphic (n,0)-form. We will see this later when we give
examples of Calabi-Yaus.

We can also show that such a (n,0)-form is unique up to a constant. Let us begin with the

following theorem.

Theorem 8.5: A nowhere vanishing holomorphic (n,0)-form 2 on a 2n-dimensional

Kahler manifold is harmonic.

Proof: Let us first show that d) = 0.
dQ =00 +09Q. (8.8)

Q is a (n,0)-form and so
0N =0. (8.9)

By assumption 2 is holomorphic and thus
oN=0. (8.10)
Now let’s turn to d'Q. In local coordinates this is

1
dfa = —WV“Qabl.,,bnfldzbl Ao Adzbnr
n — .
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(n—1)

(8.11)



Recall that the connection is pure in its indices so that the covariant derivative just reduces to

the partial derivative

1 i
d'Q=— |gacaéﬂab1...bn_1d2b1 A ANd2br =0, (8.12)

(n—1)

This completes the proof.

Theorem 8.6: On a complex 2n-dimensional complex manifold there is at most one

unique (up to a constant) globally defined holomorphic (n,0)-form.

Proof: Let Q and €’ be two such globally defined holomorphic (n,0)-forms. They can only be
proportional to the n-dimensional permutation symbol and hence must be proportional to each
other:

O =hn(2)Q, (8.13)

where h(z) must a globally defined holomorphic function. By the maximum modulus principle

such a function must be a constant.

8.2 Hodge diamond of Calabi-Yau manifolds

We saw that the extra structure of K&hler manifolds imply certain relations on their hodge
numbers. Let us now see what happens if we have a Calabi-Yau. Let us begin by stating a

theorem we will not prove but that is useful.

Theorem 8.7: On a manifold with Euler number y any vector field has at least |x|

Zeros.

Let us use this to prove the following result.

Theorem 8.8: A Calabi-Yau manifold with Euler number x # 0 has A''° = 0.

Proof: Notice first of all that the first Betti number b' = 2h!°. Thus b' = 0 iff ' = 0. This
is useful because the Betti numbers are topological invariants whereas the Hodge numbers are
not — they depend on the complex structure but not the metric. Because the Betti numbers are
topological invariants we can consider the Ricci-flat metric for simplicity.

Let us now assume that w € H! is a harmonic 1-form:

Aw=0. (8.14)



Explicitly (using the result of exercise 6.8) we have
- V'V, +R,"w, =0. (8.15)
As the Ricci tensor vanishes w is only harmonic if
V¥Vyw, =0. (8.16)
Let us multiply this by w# and integrate over the manifold M:
/M VgWw'ViV o w, = — /M VoV Vyw, =0. (8.17)

The integrand is positive definite and so we see that this implies V,w, = 0. Using now the
results of the previous theorem we see that w must have at least one zero. However, if it is

covariantly constant and vanishes at one point, then it vanishes everywhere and so w = 0.

This immediately implies the following.

Theorem 8.9: A 2n-dimensional Calabi-Yau manifold has A0 = 1.

Proof: We saw that a Calabi-Yau manifold has a unique holomorphic harmonic (n,0)-form.
This implies ™% > 1. Let us now assume that there is a different harmonic (n,0)-form Q. It
has to be closed, i.e.

dQ' =09 +0Q' =0. (8.18)

But 99 = 0 for a (n,0)-form. Recall that any (n,0)-form can be written as

V= f(z,2)n, (8.19)
where 7 is the n-dimensional alternating symbol. Thus we find that

0f(2,2) =0, (8.20)

and hence f(z,z) = f(z) is holomorphic. We have proven uniqueness of a holomorphic (n,0)-

form already and so this completes our proof.

Theorem 8.10: A 2n-dimensional Calabi-Yau manifold has h?0 = R0,

Proof: Let w, € Q7Y be a (p,0)-form. Then define a generalisation of a “Hodge dual” as:

1= _ _
— _ — — (). _ _ _ An—p41---Q
Vay...Gpn—p — p' Qa1...an,pan,p+1“,anw n-p . (821)



Taking the divergence of this expression we have (recall  is harmonic)

~ 1. o ~
valvm...&n_p — anlmanvalwan—wlu.an . (822)
p!
Let us also invert (8.21)) to find
Win—p+1---0n — n! Of1-8nyy (8 23)
~ (n—p)!pt|Qf? et '
Taking the divergence of this we get
B ~ | Q1--dn
V(_lnwan—gu»l“.an — n Va/”v(—ll...aw"—p . (824)

(n—p)!p! |10
Because ﬁ is holomorphic and non-singular, the relations (8.22)) and (8.24]) imply that
dv=0=dw=0, dv=0dw=0. (8.25)

Thus, v is harmonic if and only if w is harmonic and this completes the proof.

Exercise 8.1: Invert (8.21)) to find (8.23).

Exercise 8.2: In the above proof we used the fact that €/[|Q||? is holomorphic and
non-singular. Prove this by writing 2 = f(z)n where f(z) is a holomorphic function and

7 is the n-dimensional alternating symbol.

Let us now put all this together and study the Hodge diamonds of low-dimensional Calabi-Yau
manifolds. Let us begin in two dimensions. There, we know that h'*® = 1 because there must
be a holomorphic 1-form. This together with the symmetries h?* = h»~P0 and hP7 = p7 P4

is enough to fully determine the Hodge diamond:

1 1. (8.26)

From theorem 8.8 we see that A" # 0 implies that y = 0. There are only two manifolds that
have vanishing Euler number: the torus and Klein bottle. h'! = 1 tells us this Calabi-Yau
must be a T? since the Klein bottle is non-orientable. Thus we see that the only 2-dimensional
Calabi-Yau manifold is a torus!

Let us now turn to four dimensions and consider the case xy # 0. The resulting Hodge



diamond is

1
0 0
1 i1 1. (8.27)
0 0
1

We see that the Hodge diamond for four-dimensional Calabi-Yau manifolds with non-vanishing
Euler characteristic only depends on one Hodge number h''!. These manifolds are called “K3
surfaces” and it can be proven that they are all diffeomorphic to each other. (T is also a
Calabi-Yau but has vanishing Euler characteristic.)

Finally, let us consider the physically relevant case of six-dimensional Calabi-Yau manifolds.

The Hodge diamond is now determined by only two Hodge numbers:

1
0 0
0 pil 0
1 h1:2 h1:2 1. (8.28)
0 Ll 0
0 0
1

Exercise 8.3: Show that for a six-dimensional Calabi-Yau with non-vanishing Euler

characteristic, the Euler characteristic is given by

x=2(h"" —hl1,2) . (8.29)

8.3 Examples of Calabi-Yau manifolds

We have already met 72 and T* as examples of Calabi-Yau manifolds. There is currently no sys-
tematic way of constructing Calabi-Yau manifolds. However, there are some fruitful approaches,
such as considering submanifolds of CP" or smoothened orbifolds by “blowing up” their singu-
larities. Here we will only consider the first approach. Note that it is very hard to find metrics

on Calabi-Yau manifolds and generally we only know the manifold but not the metric!

Definition: An analytic submanifold of a manifold M is determined by the locus of

holomorphic equations F(z) =0 on M.

Theorem 8.11: An analytic submanifold of a Kahler manifold is also Kahler.




Proof: This follows from the fact that the restriction of the K&hler metric and Ké&hler form to

an analytic submanifold gives itself a Kahler metric and Kéhler form.

One may try and construct Calabi-Yau’s from compact submanifolds of C". For these to
be complex they need to be analytic submanifolds. However, the only compact, connected
holomorphic submanifolds of C™ are points. This comes from the maximum modulus principle.

We saw that CPY is Kihler but not Calabi-Yau. We can now try and find analytic sub-
manifolds of CPY (which are thus all Kihler) which are Calabi-Yau. CP" avoids the maximum
modulus issue because it is compact.

There is a theorem by Chow that all analytic submanifolds of CP" can be described as the
locus of a finite number of holomorphic homogeneous polynomial equations. We will keep things
simple here and consider only those submanifolds given by the locus of a single holomorphic
homogeneous polynomial equation. The generalisation to the intersection of several polynomial
equations is fairly simple and you can read about it in Candelas’ lecture notes as well as in Green,
Schwarz, Witten.

Example 8.1: Let us start by considering 1-dimensional submanifolds of CP?. Let us use
the homogeneous coordinates of C3: 21, 2, 23. In order to obtain a homogeneous polynomial
each term has to have the same combined power of all z’s. For simplicity let us consider the
polynomial

P(z) =21+ 25 + 25 . (8.30)

The surface P(z) = 0 is well-defined in CP? because P(\z) = A" P(z) = 0 respects the equivalence
relation used to obtain CP? from C3. Let us find some values of n for which this is a Calabi-Yau
by attempting to construct a holomorphic 1-form. Let us start by considering the patch z; # 0

and defining the inhomogeneous coordinates = z2/2; and y = z3/2z1. We can then write
P(z,y) =21 (1+2" +y") = 2{'p(z,y) = 0. (8.31)

Let us define a 1-form in this patch as

dx

On first sight this looks no good because it is singular whenever g—g = 0. However, recall that

p = 0 on the surface we are considering and thus

dp dp
dp=0=—d —dy. .
p =10 o a:Jrayy (8.33)
This implies that we can write
dy
Q1 =— . 8.34
T (8.34)



Now we see that 7 is only non-singular when both % = 2—5 = 0. However, at such a point

dp = 0 and so the normal to the surface would vanish there. This implies the surface has a cusp
and so we are happy to discard such surfaces.

Assuming now that we only consider homogeneous holomorphic polynomial equations such
that dp # 0 everywhere, we need to consider the overlap between two different coordinate patches
and show that € is well-defined. Consider thus the region where z5 # 0 and define there the

inhomogeneous coordinates & = z1 /22, § = 23/22. Now the polynomial is

P(jj,?:/) :Zg (i‘n"i_gn—"_l) :Zgﬁ(l‘,y) =0, (835)

and define in this region the 1-form

dz
Qo= ———. 8.36
9p/ 0y (8.36)
Let us evaluate the one-forms in the overlap where z; # 0, z5 # 0. There we find
dx dx
Ql = 1" QQ = - ~n—1 " (837)
ny ny
However, the coordinates are related by
T=a1, g=yx ', (8.38)
and thus we see that
Qy =230, . (8.39)

We see that when n = 3 i.e. for a cubic polynomial, the 1-form considered is well-defined in
the regions z; # 0 and 29 # 0 and their overlap. We can continue this procedure to show that
the one-form is globally well-defined. This is clearly a holomorphic (1,0)-form which vanishes

nowhere and thus this manifold is Calabi-Yau.

Exercise 8.4: Construct a 1-form in the region z3 # 0 which agrees with ; in the
overlap z1 # 0, z3 # 0 and with Q9 in the overlap zo # 0, 23 # 0.

It is a different matter to realise that we have just described a torus! We know this is the
case from our discussion of Hodge diamonds. Note that a generic cubic homogeneous polynomial
in CP? can be written as

Z aijrzizjze =0, (8.40)
i3,k
where 7,5,k = 1,2,3. The (in general complex) coefficients a;;; have to be completely symmetric

. . . . 5
in their indices and so there are 3X3x5

= 10 independent complex parameters. However, any
linear coordinate transformation on the z;’s (which corresponds to an element in GL(3,C) leaves

the form of the polynomial invariant. Thus we can fix 9 out of the 10 complex parameters in the



polynomial and we are left with one independent complex parameter. This corresponds to the

complex structure of the torus.

Example 8.2: Let us now construct K3 surfaces which are four-dimensional Calabi-Yau man-
ifolds. We will proceed analogously to the two-dimensional case by considering a homogeneous

polynomial in CP?. We will take the quartic polynomial in homogeneous coordinates on C*.
P(z) =2t + 25+ 25+ 21 =0. (8.41)

Let us again consider the coordinate patch z; # 0 and introduce inhomogeneous coordinates

x:z—z, yzﬁ, =24 (8.42)
Z1 Z1 Z1
The polynomial is then
P(z,y,2) = zip(z,y, 2) = 2} (:c4 +yt 2t 1) =0. (8.43)
Let us define a two-form de A d
X Y
= . 8.44
YT op/oz (844)
Using
dp dp Op
dp = —d — 4+ —dz=0 8.45
P= 5 + Ay + 9:"" ’ (8.45)
and wedging the expression with dy we get
Ip Ip
—drx ANdy=——dzNdy. 4
o x A dy o z A dy (8.46)
Thus we can write do A d do A d
O = yANaz az/Ndz (8.47)

- Op/ox  Op/oy’

and again we see that if dp # 0 everywhere this two-form is non-singular.

Exercise 8.5: Show that this one-form can be defined globally and thus that this sub-

manifold is a Calabi-Yau.

Let us end this discussion by counting the number of complex structure moduli on K3 surfaces.

A general quartic polynomial can be written as

Z a2 28 =0, (8.48)
4,3,k,1

where now ¢, j, k,l = 1,...4. Thus there are W = 35 independent complex a;;r;. Again we

can act with linear coordinate transformations (i.e. GL(4, C) and leave the polynomial invariant.

10



This means we can fix 16 complex parameters. In total there are 19 independent complex

parameters remaining which are the complex structure moduli.

Exercise 8.6: By considering the polynomial P(z) = 2] + 25 + 2§ + 2§ = 0 show that

the above construction only works for n = 4.

Exercise 8.7: Generalise the construction above to find a holomorphic (3,0)-form for a
quintic polynomial in CP* thus constructing a 6-dimensional Calabi-Yau manifold. Show
that there are 101 complex structure moduli of these kinds of 6-dimensional Calabi-Yau

manifolds.

11
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