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8 Calabi-Yau manifolds

We are now finally in a position to discuss Calabi-Yau manifolds. We will begin by defining

these. There are in fact several different equivalent definitions which we hope to understand by

the end of this chapter. We will conclude with some examples.

8.1 Yau’s Theorem

Let us begin by expanding on what we have just learnt in the previous chapter.

Theorem 8.1: If a Kähler manifold admits a Ricci-flat metric its first Chern class

vanishes.

Proof: Let g be the Ricci-flat metric and let us assume the Kähler manifold admits a different,

not necessarily Ricci-flat, metric g′. Then by Theorem 7.10 we know that the Ricci-form of the

two metrics is related by

R(g′) = R(g)− dA . (8.1)

Since R(g) = 0 we see that R(g′) vanishes in the cohomology class and hence c1 = 0.

Corollary: CPN does not admit a Ricci-flat metric.

Proof: Recall from exercise 5.8 that on CPN the Ricci form is given by

R = − (N + 1)ω , (8.2)

where ω is the Kähler form. We saw in chapter 7 that the Kähler form is harmonic. This implies

it is not exact and neither is R. Hence c1 6= 0 and there cannot be a Ricci-flat metric.

We see that c1 is a topological obstruction to having a Ricci-flat metric on a Kähler manifold.

Calabi conjectured and Yau proved that this is the only topological obstruction.
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(Yau’s) Theorem 8.2: Given a Kähler manifold (M, g, ω), let R be any (1, 1)-form

representing the first Chern class. Then there exists a unique metric g′ on M with Kähler

form ω′ in the same Kähler class as ω whose Ricci-form is R.

We will not prove the theorem here. However, notice that as a special case of the theorem

we find the following.

Corollary: Let (M, g, ω) be a Kähler manifold with c1 = 0. Then there exists a unique Ricci-flat

metric g′ on M with Kähler form ω′ in the same Kähler class as ω.

This allows us to define a Calabi-Yau manifold.

Definition: A Calabi-Yau manifold is a compact Kähler manifold with vanishing first

Chern class.

Theorem 8.3: A 2n-dimensional Calabi-Yau manifold is a Kähler manifold with the

following equivalent properties:

• It has vanishing first Chern class.

• It admits a Ricci-flat metric.

• It admits a metric whose holonomy group is (a subgroup of) SU(N).

• There is a unique (up to a constant) holomorphic and nowhere vanishing (n, 0)-form

Ω.

• It admits a pair of globally well-defined covariantly constant spinors.

We have already shown that a Ricci-flat metric implies c1 = 0 and stated the converse in the

form of Yau’s Theorem. We have proven the equivalence of SU(N) holonomy and a Ricci-flat

metric in chapter 5. Here we will only prove that a holomorphic and nowhere vanishing (n, 0)-

form implies Calabi-Yau although the other equivalences are discussed in Candelas’ lecture notes

as well as partially in Green, Schwarz, Witten.

Theorem 8.4: A compact 2n-dimensional Kähler manifold with a nowhere vanishing

holomorphic (n, 0)-form Ω is Calabi-Yau.

Proof: An (n, 0)-form Ω ∈ Ω(n,0) has to be proportional to the n−dimensional alternating

symbol ηa1...an = 1√
g εa1...an . Since the (n, 0)-form is holomorphic we can write

Ωa1...an = f(z)ηa1...an . (8.3)

Using a Hermitian metric on the Kähler manifold, we can form the globally well-defined coordi-
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nate scalar

||Ω||2=
1

n!
Ωa1...ang

a1b̄1 . . . ganb̄nΩ̄b̄1...b̄n =
|f |2
√
g
. (8.4)

Inverting this expression we find
√
g =

|f |2

||Ω||2
. (8.5)

Recall that the Ricci-form is given by

R = −i∂∂̄ ln
√
g . (8.6)

Plugging in (8.5) into this formula we see that

R = i∂∂̄ ln||Ω||2 . (8.7)

But as we said ||Ω||2 is a globally well-defined coordinate scalar and thus R is exact. This implies

c1 = 0 and completes the proof.

This is a very important theorem since it is often easy to find Calabi-Yau manifolds by trying

to construct a nowhere vanishing holomorphic (n, 0)-form. We will see this later when we give

examples of Calabi-Yaus.

We can also show that such a (n, 0)-form is unique up to a constant. Let us begin with the

following theorem.

Theorem 8.5: A nowhere vanishing holomorphic (n, 0)-form Ω on a 2n-dimensional

Kähler manifold is harmonic.

Proof: Let us first show that dΩ = 0.

dΩ = ∂Ω + ∂̄Ω . (8.8)

Ω is a (n, 0)-form and so

∂Ω = 0 . (8.9)

By assumption Ω is holomorphic and thus

∂̄Ω = 0 . (8.10)

Now let’s turn to d†Ω. In local coordinates this is

d†Ω = − 1

(n− 1) !
∇aΩab1...bn−1

dzb1 ∧ . . . ∧ dzbn−1

= − 1

(n− 1) !
gac̄∇c̄Ωab1...bn−1

dzb1 ∧ . . . ∧ dzbn−1 .

(8.11)
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Recall that the connection is pure in its indices so that the covariant derivative just reduces to

the partial derivative

d†Ω = − 1

(n− 1) !
gac̄∂c̄Ωab1...bn−1dz

b1 ∧ . . . ∧ dzbn−1 = 0 . (8.12)

This completes the proof.

Theorem 8.6: On a complex 2n-dimensional complex manifold there is at most one

unique (up to a constant) globally defined holomorphic (n, 0)-form.

Proof: Let Ω and Ω′ be two such globally defined holomorphic (n, 0)-forms. They can only be

proportional to the n-dimensional permutation symbol and hence must be proportional to each

other:

Ω′ = h(z)Ω , (8.13)

where h(z) must a globally defined holomorphic function. By the maximum modulus principle

such a function must be a constant.

8.2 Hodge diamond of Calabi-Yau manifolds

We saw that the extra structure of Kähler manifolds imply certain relations on their hodge

numbers. Let us now see what happens if we have a Calabi-Yau. Let us begin by stating a

theorem we will not prove but that is useful.

Theorem 8.7: On a manifold with Euler number χ any vector field has at least |χ|
zeros.

Let us use this to prove the following result.

Theorem 8.8: A Calabi-Yau manifold with Euler number χ 6= 0 has h1,0 = 0.

Proof: Notice first of all that the first Betti number b1 = 2h10. Thus b1 = 0 iff h10 = 0. This

is useful because the Betti numbers are topological invariants whereas the Hodge numbers are

not – they depend on the complex structure but not the metric. Because the Betti numbers are

topological invariants we can consider the Ricci-flat metric for simplicity.

Let us now assume that ω ∈ H1 is a harmonic 1-form:

∆ω = 0 . (8.14)
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Explicitly (using the result of exercise 6.8) we have

−∇ν∇νωµ +Rµ
νων = 0 . (8.15)

As the Ricci tensor vanishes ω is only harmonic if

∇ν∇νωµ = 0 . (8.16)

Let us multiply this by ωµ and integrate over the manifold M :∫
M

√
gωµ∇ν∇νωµ = −

∫
M

√
g∇νωµ∇νωµ = 0 . (8.17)

The integrand is positive definite and so we see that this implies ∇νωµ = 0. Using now the

results of the previous theorem we see that ω must have at least one zero. However, if it is

covariantly constant and vanishes at one point, then it vanishes everywhere and so ω = 0.

This immediately implies the following.

Theorem 8.9: A 2n-dimensional Calabi-Yau manifold has hn,0 = 1.

Proof: We saw that a Calabi-Yau manifold has a unique holomorphic harmonic (n, 0)-form.

This implies hn,0 ≥ 1. Let us now assume that there is a different harmonic (n, 0)-form Ω′. It

has to be closed, i.e.

dΩ′ = ∂Ω′ + ∂̄Ω′ = 0 . (8.18)

But ∂Ω′ = 0 for a (n, 0)-form. Recall that any (n, 0)-form can be written as

Ω′ = f(z, z̄)η , (8.19)

where η is the n-dimensional alternating symbol. Thus we find that

∂̄f(z, z̄) = 0 , (8.20)

and hence f(z, z̄) = f(z) is holomorphic. We have proven uniqueness of a holomorphic (n, 0)-

form already and so this completes our proof.

Theorem 8.10: A 2n-dimensional Calabi-Yau manifold has hp,0 = hn−p,0.

Proof: Let ωp ∈ Ωp,0 be a (p, 0)-form. Then define a generalisation of a “Hodge dual” as:

vā1...ān−p =
1

p!
Ω̄ā1...ān−pān−p+1...ānω

ān−p+1...ān . (8.21)
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Taking the divergence of this expression we have (recall Ω is harmonic)

∇ā1vā1...ān−p
=

1

p!
Ω̄ā1...ān∇ā1ωān−p+1...ān . (8.22)

Let us also invert (8.21) to find

ωān−p+1...ān =
n!

(n− p) ! p!

1

||Ω||2
Ωā1...ānvā1...ān−p

. (8.23)

Taking the divergence of this we get

∇ānωān−p+1...ān =
n!

(n− p) ! p!

Ωā1...ān

||Ω||2
∇ānvā1...ān−p

. (8.24)

Because Ω̄
||Ω||2 is holomorphic and non-singular, the relations (8.22) and (8.24) imply that

dv = 0⇐⇒ d†ω = 0 , d†v = 0⇐⇒ dω = 0 . (8.25)

Thus, v is harmonic if and only if ω is harmonic and this completes the proof.

Exercise 8.1: Invert (8.21) to find (8.23).

Exercise 8.2: In the above proof we used the fact that Ω̄/||Ω||2 is holomorphic and

non-singular. Prove this by writing Ω = f(z)η where f(z) is a holomorphic function and

η is the n-dimensional alternating symbol.

Let us now put all this together and study the Hodge diamonds of low-dimensional Calabi-Yau

manifolds. Let us begin in two dimensions. There, we know that h1,0 = 1 because there must

be a holomorphic 1-form. This together with the symmetries hp,0 = hn−p,0 and hp,q = hn−p,n−q

is enough to fully determine the Hodge diamond:

1

1 1

1

. (8.26)

From theorem 8.8 we see that h1,0 6= 0 implies that χ = 0. There are only two manifolds that

have vanishing Euler number: the torus and Klein bottle. h1,1 = 1 tells us this Calabi-Yau

must be a T 2 since the Klein bottle is non-orientable. Thus we see that the only 2-dimensional

Calabi-Yau manifold is a torus!

Let us now turn to four dimensions and consider the case χ 6= 0. The resulting Hodge
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diamond is
1

0 0

1 h1,1 1

0 0

1

. (8.27)

We see that the Hodge diamond for four-dimensional Calabi-Yau manifolds with non-vanishing

Euler characteristic only depends on one Hodge number h1,1. These manifolds are called “K3

surfaces” and it can be proven that they are all diffeomorphic to each other. (T 4 is also a

Calabi-Yau but has vanishing Euler characteristic.)

Finally, let us consider the physically relevant case of six-dimensional Calabi-Yau manifolds.

The Hodge diamond is now determined by only two Hodge numbers:

1

0 0

0 h1,1 0

1 h1,2 h1,2 1

0 h1,1 0

0 0

1

. (8.28)

Exercise 8.3: Show that for a six-dimensional Calabi-Yau with non-vanishing Euler

characteristic, the Euler characteristic is given by

χ = 2
(
h1,1 − h1, 2

)
. (8.29)

8.3 Examples of Calabi-Yau manifolds

We have already met T 2 and T 4 as examples of Calabi-Yau manifolds. There is currently no sys-

tematic way of constructing Calabi-Yau manifolds. However, there are some fruitful approaches,

such as considering submanifolds of CPN or smoothened orbifolds by “blowing up” their singu-

larities. Here we will only consider the first approach. Note that it is very hard to find metrics

on Calabi-Yau manifolds and generally we only know the manifold but not the metric!

Definition: An analytic submanifold of a manifold M is determined by the locus of

holomorphic equations F (z) = 0 on M .

Theorem 8.11: An analytic submanifold of a Kähler manifold is also Kähler.
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Proof: This follows from the fact that the restriction of the Kähler metric and Kähler form to

an analytic submanifold gives itself a Kähler metric and Kähler form.

One may try and construct Calabi-Yau’s from compact submanifolds of Cn. For these to

be complex they need to be analytic submanifolds. However, the only compact, connected

holomorphic submanifolds of Cn are points. This comes from the maximum modulus principle.

We saw that CPN is Kähler but not Calabi-Yau. We can now try and find analytic sub-

manifolds of CPN (which are thus all Kähler) which are Calabi-Yau. CPN avoids the maximum

modulus issue because it is compact.

There is a theorem by Chow that all analytic submanifolds of CPN can be described as the

locus of a finite number of holomorphic homogeneous polynomial equations. We will keep things

simple here and consider only those submanifolds given by the locus of a single holomorphic

homogeneous polynomial equation. The generalisation to the intersection of several polynomial

equations is fairly simple and you can read about it in Candelas’ lecture notes as well as in Green,

Schwarz, Witten.

Example 8.1: Let us start by considering 1-dimensional submanifolds of CP2. Let us use

the homogeneous coordinates of C3: z1, z2, z3. In order to obtain a homogeneous polynomial

each term has to have the same combined power of all z’s. For simplicity let us consider the

polynomial

P (z) = zn1 + zn2 + zn3 . (8.30)

The surface P (z) = 0 is well-defined in CP2 because P (λz) = λnP (z) = 0 respects the equivalence

relation used to obtain CP2 from C3. Let us find some values of n for which this is a Calabi-Yau

by attempting to construct a holomorphic 1-form. Let us start by considering the patch z1 6= 0

and defining the inhomogeneous coordinates x = z2/z1 and y = z3/z1. We can then write

P (x, y) = zn1 (1 + xn + yn) = zn1 p(x, y) = 0 . (8.31)

Let us define a 1-form in this patch as

Ω1 =
dx

∂p/∂y
. (8.32)

On first sight this looks no good because it is singular whenever ∂p
∂y = 0. However, recall that

p = 0 on the surface we are considering and thus

dp = 0 =
∂p

∂x
dx+

∂p

∂y
dy . (8.33)

This implies that we can write

Ω1 = − dy

∂p/∂x
. (8.34)
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Now we see that Ω1 is only non-singular when both ∂p
∂x = ∂p

∂y = 0. However, at such a point

dp = 0 and so the normal to the surface would vanish there. This implies the surface has a cusp

and so we are happy to discard such surfaces.

Assuming now that we only consider homogeneous holomorphic polynomial equations such

that dp 6= 0 everywhere, we need to consider the overlap between two different coordinate patches

and show that Ω1 is well-defined. Consider thus the region where z2 6= 0 and define there the

inhomogeneous coordinates x̃ = z1/z2, ỹ = z3/z2. Now the polynomial is

P (x̃, ỹ) = zn2 (x̃n + ỹn + 1) = zn2 p̃(x̃, ỹ) = 0 , (8.35)

and define in this region the 1-form

Ω2 = − dx̃

∂p̃/∂ỹ
. (8.36)

Let us evaluate the one-forms in the overlap where z1 6= 0, z2 6= 0. There we find

Ω1 =
dx

nyn−1
, Ω2 = − dx̃

nỹn−1
. (8.37)

However, the coordinates are related by

x̃ = x−1 , ỹ = yx−1 , (8.38)

and thus we see that

Ω2 = xn−3Ω1 . (8.39)

We see that when n = 3 i.e. for a cubic polynomial, the 1-form considered is well-defined in

the regions z1 6= 0 and z2 6= 0 and their overlap. We can continue this procedure to show that

the one-form is globally well-defined. This is clearly a holomorphic (1, 0)-form which vanishes

nowhere and thus this manifold is Calabi-Yau.

Exercise 8.4: Construct a 1-form in the region z3 6= 0 which agrees with Ω1 in the

overlap z1 6= 0, z3 6= 0 and with Ω2 in the overlap z2 6= 0, z3 6= 0.

It is a different matter to realise that we have just described a torus! We know this is the

case from our discussion of Hodge diamonds. Note that a generic cubic homogeneous polynomial

in CP2 can be written as ∑
i,j,k

aijkzizjzk = 0 , (8.40)

where i,j,k = 1, 2, 3. The (in general complex) coefficients aijk have to be completely symmetric

in their indices and so there are 3×4×5
3! = 10 independent complex parameters. However, any

linear coordinate transformation on the zi’s (which corresponds to an element in GL(3,C) leaves

the form of the polynomial invariant. Thus we can fix 9 out of the 10 complex parameters in the

9



polynomial and we are left with one independent complex parameter. This corresponds to the

complex structure of the torus.

Example 8.2: Let us now construct K3 surfaces which are four-dimensional Calabi-Yau man-

ifolds. We will proceed analogously to the two-dimensional case by considering a homogeneous

polynomial in CP3. We will take the quartic polynomial in homogeneous coordinates on C4.

P (z) = z4
1 + z4

2 + z4
3 + z4

4 = 0 . (8.41)

Let us again consider the coordinate patch z1 6= 0 and introduce inhomogeneous coordinates

x =
z2

z1
, y =

z3

z1
, z =

z4

z1
. (8.42)

The polynomial is then

P (x, y, z) = z4
1p(x, y, z) = z4

1

(
x4 + y4 + z4 + 1

)
= 0 . (8.43)

Let us define a two-form

Ω1 =
dx ∧ dy
∂p/∂z

. (8.44)

Using

dp =
∂p

∂x
dx+

∂p

∂y
+
∂p

∂z
dz = 0 , (8.45)

and wedging the expression with dy we get

∂p

∂x
dx ∧ dy = −∂p

∂z
dz ∧ dy . (8.46)

Thus we can write

Ω1 =
dy ∧ dz
∂p/∂x

=
dz ∧ dx
∂p/∂y

, (8.47)

and again we see that if dp 6= 0 everywhere this two-form is non-singular.

Exercise 8.5: Show that this one-form can be defined globally and thus that this sub-

manifold is a Calabi-Yau.

Let us end this discussion by counting the number of complex structure moduli onK3 surfaces.

A general quartic polynomial can be written as∑
i,j,k,l

aijklz
izjzkzl = 0 , (8.48)

where now i, j, k, l = 1, . . . 4. Thus there are 4×5×6×7
4! = 35 independent complex aijkl. Again we

can act with linear coordinate transformations (i.e. GL(4,C) and leave the polynomial invariant.
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This means we can fix 16 complex parameters. In total there are 19 independent complex

parameters remaining which are the complex structure moduli.

Exercise 8.6: By considering the polynomial P (z) = zn1 + zn2 + zn3 + zn4 = 0 show that

the above construction only works for n = 4.

Exercise 8.7: Generalise the construction above to find a holomorphic (3, 0)-form for a

quintic polynomial in CP4 thus constructing a 6-dimensional Calabi-Yau manifold. Show

that there are 101 complex structure moduli of these kinds of 6-dimensional Calabi-Yau

manifolds.
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