Quantum Field Theory: Example Sheet 1

Prof. M. J. Perry, 16 October 2013

1. A string of length a, mass per unit length σ and under tension T is fixed at each end. The Lagrangian governing the time evolution of small transverse displacements y(x,t) is

$$L = \int_0^a dx \left[\frac{\sigma}{2} \left(\frac{\partial y}{\partial t} \right)^2 - \frac{T}{2} \left(\frac{\partial y}{\partial x} \right)^2 \right]$$

where x identifies position along the string from one end point. By expressing the displacement as a sine series Fourier expansion of the form

$$y(x,t) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} q_n(t) \sin\left(\frac{n\pi x}{a}\right)$$

show that the Lagrangian becomes

$$L = \sum_{n=1}^{\infty} \left[\frac{\sigma}{2} \dot{q}_n^2 - \frac{T}{2} \left(\frac{n\pi}{a} \right)^2 q_n^2 \right].$$

Derive the equations of motion. Hence show that the string is equivalent to an infinite set of decoupled harmonic oscillators with frequencies

$$\omega_n = \sqrt{\frac{T}{\sigma}} \left(\frac{n\pi}{a} \right) .$$

2. A string has classical Hamiltonian given by

$$H = \sum_{n=1}^{\infty} \left(\frac{1}{2} p_n^2 + \frac{1}{2} \omega_n^2 \, q_n^2 \right)$$

where ω_n is the frequency of the *n*th mode. Compare this Hamiltonian to the Lagrangian in the previous question. The mass per unit length, σ , has now been set to unity so as to make various formulae somewhat simpler.

After quantization, q_n and p_n become operators satisfying

$$[q_n, q_m] = [p_n, p_m] = 0$$
 and $[q_n, p_m] = i\delta_{nm}$.

Introduce creation and annihilation operators a_n and a_n^{\dagger} ,

$$a_n = \sqrt{\frac{\omega_n}{2}} q_n + \frac{i}{\sqrt{2\omega_n}} p_n$$
 and $a_n^{\dagger} = \sqrt{\frac{\omega_n}{2}} q_n - \frac{i}{\sqrt{2\omega_n}} p_n$.

Show that they satisfy the commutation relations

$$[a_n, a_m] = [a_n^{\dagger}, a_m^{\dagger}] = 0$$
 and $[a_n, a_m^{\dagger}] = \delta_{nm}$.

Show that the Hamiltonian of the system can be written in the form

$$H = \sum_{n=1}^{\infty} \frac{1}{2} \omega_n \left(a_n a_n^{\dagger} + a_n^{\dagger} a_n \right) .$$

Given the existence of a ground state $|0\rangle$ such that $a_n|0\rangle = 0$, explain how, after removing the vacuum energy, the Hamiltonian can be expressed as

$$H = \sum_{n=1}^{\infty} \omega_n a_n^{\dagger} a_n .$$

Show further that $[H, a_n^{\dagger}] = \omega_n a_n^{\dagger}$ and hence calculate the energy of the state

$$|l_1, l_2, \dots, l_N\rangle = \left(a_1^{\dagger}\right)^{l_1} \left(a_2^{\dagger}\right)^{l_2} \dots \left(a_N^{\dagger}\right)^{l_N} |0\rangle.$$

- **3.** Show directly that if $\phi(x)$ satisfies the Klein-Gordon equation, then $\phi(\Lambda^{-1}x)$ also satisfies this equation for any Lorentz transformation Λ .
- **4.** The motion of a complex field $\phi(x)$ is governed by the Lagrangian density

$$\mathcal{L} = -\partial_a \phi^* \partial^a \phi - m^2 \phi^* \phi - \frac{\lambda}{2} (\phi^* \phi)^2.$$

Write down the Euler-Lagrange field equations for this system. Verify that the Lagrangian density is invariant under the infinitesimal transformation

$$\delta \phi = i\alpha \phi$$
 , $\delta \phi^* = -i\alpha \phi^*$.

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equation satisfied by ϕ .

5. Verify that the Lagrangian density

$$\mathcal{L} = -\frac{1}{2}\partial_a\phi_\alpha\partial^a\phi_\alpha - \frac{1}{2}m^2\phi_\alpha\phi_\alpha$$

for a triplet of real fields ϕ_{α} ($\alpha = 1, 2, 3$) is invariant under the infinitesimal SO(3) rotation by θ

$$\phi_{\alpha} \to \phi_{\alpha} + \theta \epsilon_{\alpha\beta\gamma} n_{\beta} \phi_{\gamma}$$

where n_{α} is a constant unit vector. Compute the Noether current j^{a} . Deduce that the three quantities

$$Q_{\alpha} = \int d^3x \, \epsilon_{\alpha\beta\gamma} \, \dot{\phi}_{\beta} \phi_{\gamma}$$

are all conserved and verify this directly using the field equations satisfied by ϕ_{α} .

6. A Lorentz transformation $x^a \to x'^a = \Lambda^a_{\ b} x^b$ is such that it preserves the Minkowski metric η_{ab} , meaning that $\eta_{ab} x^a x^b = \eta_{ab} x'^a x'^b$ for all x. Show that this implies that

$$\eta_{ab} = \eta_{cd} \Lambda^c_{\ a} \Lambda^d_{\ b} .$$
 (*)

Use this result to show that an infinitesimal transformation of the form

$$\Lambda^a_b = \delta^a_b + \omega^a_b$$

is a Lorentz transformation when ω^{ab} is antisymmetric: i.e. $\omega^{ab} = -\omega^{ba}$.

Write down the matrix form for ω^a_b that corresponds to a rotation through an infinitesimal angle θ about the x^3 -axis. Do the same for a boost along the x^1 -axis by an infinitesimal velocity v. Deduce the form of a Lorentz transformation for a finite rotation about the x^3 -axis, and for a finite boost along the x^1 -axis by calculating the exponential of the matrix you found. (Hint: Look carefully at the squares of the matrices.) Verify that your results are indeed Lorentz transformations by checking that they satisy (*)

7. Consider the infinitesimal form of the Lorentz transformation derived in the previous question: $x^a \to x^a + \omega^a_b x^b$. Show that a scalar field transforms as

$$\phi(x) \to \phi'(x) = \phi(x) - \omega_b^a x^b \partial_a \phi(x)$$

and hence show that the variation of the Lagrangian density is a total derivative

$$\delta \mathcal{L} = -\partial_a(\omega^a_{\ b} x^b \mathcal{L}) \,.$$

Using Noether's theorem deduce the existence of the conserved current

$$j^a = -\omega^c_{\ b} \left(T_c^a \, x^b \right).$$

The three conserved charges arising from spatial rotational invariance define the *total* angular momentum of the field. Show that these charges are given by

$$Q_i = \epsilon_{ijk} \int d^3x \left(x^j T^{0k} - x^k T^{0j} \right) .$$

Derive the conserved charges arising from invariance under Lorentz boosts. Show that they imply

$$\frac{d}{dt} \int d^3x \ (x^i T^{00}) = \text{constant}$$

and interpret this equation.

8 A class of interesting theories are those invariant under the scaling of all lengths by

$$x^a \to x'^a = \lambda x^a$$
 and $\phi(x) \to \phi'(x) = \lambda^{-D} \phi(\lambda^{-1} x)$.

Here D is called the *scaling dimension* of the field. Consider the action for a real scalar field given by

$$S = \int d^4x \left(-\frac{1}{2} \,\partial_a \phi \partial^a \phi - \frac{1}{2} m^2 \phi^2 - g \phi^p \right) .$$

Find the scaling dimension D such that the part of S involving the derivative terms is invariant. For what values of m and p is the scaling (1) a symmetry of the theory. How do these conclusions change for a scalar field living in an (n+1)-dimensional spacetime instead of a (3+1)-dimensional spacetime?

- In 3+1 dimensions, use Noether's theorem to construct the conserved current D^a associated with scaling invariance.
 - **9.** Show that in the Heisenberg picture,

$$\dot{\phi}(x) = i[H, \phi(x)] = \pi(x)$$
 and $\dot{\pi}(x) = i[H, \pi(x)] = \nabla^2 \phi(x) - m^2 \phi(x)$.

Hence show that the operator $\phi(x)$ satisfies the Klein-Gordon equation.

10. Let $\phi(x)$ be a real scalar field in the Heisenberg picture. Show that the relativistically normalized one-particle states $|p\rangle = \sqrt{2E_{\vec{p}}} \, a^{\dagger} \, |0\rangle$ satisfy

$$\langle 0 | \phi(x) | p \rangle = e^{ip \cdot x}$$

Please address any comments, especially about errors and omissions to: mjp1@cam.ac.uk