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Quantum Field Theory: Example Sheet 1

Prof. M. J. Perry, 16 October 2013

1. A string of length a, mass per unit length σ and under tension T is fixed at each

end. The Lagrangian governing the time evolution of small transverse displacements

y(x, t) is

L =

∫ a

0

dx

[

σ

2

(

∂y

∂t

)2

− T

2

(

∂y

∂x

)2
]

where x identifies position along the string from one end point. By expressing the

displacement as a sine series Fourier expansion of the form

y(x, t) =

√

2

a

∞
∑

n=1

qn(t) sin
(nπx

a

)

show that the Lagrangian becomes

L =
∞

∑

n=1

[

σ

2
q̇2

n − T

2

(nπ

a

)2

q2

n

]

.

Derive the equations of motion. Hence show that the string is equivalent to an infinite

set of decoupled harmonic oscillators with frequencies

ωn =

√

T

σ

(nπ

a

)

.

2. A string has classical Hamiltonian given by

H =
∞

∑

n=1

(

1

2
p2

n + 1

2
ω2

n q2

n

)

where ωn is the frequency of the nth mode. Compare this Hamiltonian to the La-

grangian in the previous question. The mass per unit length, σ, has now been set to

unity so as to make various formulae somewhat simpler.

After quantization, qn and pn become operators satisfying

[qn, qm] = [pn, pm] = 0 and [qn, pm] = iδnm .
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Introduce creation and annihilation operators an and a†
n,

an =

√

ωn

2
qn +

i√
2ωn

pn and a†
n =

√

ωn

2
qn − i√

2ωn

pn .

Show that they satisfy the commutation relations

[an, am] = [a†
n, a

†
m] = 0 and [an, a

†
m] = δnm .

Show that the Hamiltonian of the system can be written in the form

H =
∞

∑

n=1

1

2
ωn

(

ana
†
n + a†

nan

)

.

Given the existence of a ground state |0〉 such that an|0〉 = 0, explain how, after

removing the vacuum energy, the Hamiltonian can be expressed as

H =
∞

∑

n=1

ωna
†
nan .

Show further that [H, a†
n] = ωn a†

n and hence calculate the energy of the state

|l1, l2, . . . , lN〉 =
(

a
†
1

)l1
(

a
†
2

)l2

. . .
(

a
†
N

)lN
|0〉 .

3. Show directly that if φ(x) satisfies the Klein-Gordon equation, then φ(Λ−1x) also

satisfies this equation for any Lorentz transformation Λ.

4. The motion of a complex field φ(x) is governed by the Lagrangian density

L = −∂aφ
∗∂aφ − m2φ∗φ − λ

2
(φ∗φ)2 .

Write down the Euler-Lagrange field equations for this system. Verify that the La-

grangian density is invariant under the infinitesimal transformation

δφ = iαφ , δφ∗ = −iαφ∗ .

Derive the Noether current associated with this transformation and verify explicitly

that it is conserved using the field equation satisfied by φ.

5. Verify that the Lagrangian density

L = −1

2
∂aφα∂aφα − 1

2
m2φαφα
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for a triplet of real fields φα (α = 1, 2, 3) is invariant under the infinitesimal SO(3)

rotation by θ

φα → φα + θǫαβγnβφγ

where nα is a constant unit vector. Compute the Noether current ja. Deduce that the

three quantities

Qα =

∫

d3x ǫαβγ φ̇βφγ

are all conserved and verify this directly using the field equations satisfied by φα.

6. A Lorentz transformation xa → x′a = Λa
bx

b is such that it preserves the Minkowski

metric ηab, meaning that ηabx
axb = ηabx

′ax′b for all x. Show that this implies that

ηab = ηcdΛ
c
aΛ

d
b . (∗)

Use this result to show that an infinitesimal transformation of the form

Λa
b = δa

b + ωa
b

is a Lorentz transformation when ωab is antisymmetric: i.e. ωab = −ωba.

Write down the matrix form for ωa
b that corresponds to a rotation through an in-

finitesimal angle θ about the x3-axis. Do the same for a boost along the x1-axis by

an infinitesimal velocity v. Deduce the form of a Lorentz transformation for a finite

rotation about the x3-axis, and for a finite boost along the x1-axis by calculating the

exponential of the matrix you found. (Hint: Look carefully at the squares of the ma-

trices.) Verify that your results are indeed Lorentz transformations by checking that

they satisy (*)

7. Consider the infinitesimal form of the Lorentz transformation derived in the previous

question: xa → xa + ωa
bx

b. Show that a scalar field transforms as

φ(x) → φ′(x) = φ(x) − ωa
b xb ∂aφ(x)

and hence show that the variation of the Lagrangian density is a total derivative

δL = −∂a(ω
a
bx

b L) .

Using Noether’s theorem deduce the existence of the conserved current

ja = −ωc
b (T a

c xb) .
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The three conserved charges arising from spatial rotational invariance define the total

angular momentum of the field. Show that these charges are given by

Qi = ǫijk

∫

d3x
(

xjT 0k − xkT 0j
)

.

Derive the conserved charges arising from invariance under Lorentz boosts. Show that

they imply

d

dt

∫

d3x (xi T 00) = constant

and interpret this equation.

8 A class of interesting theories are those invariant under the scaling of all lengths

by

xa → x′a = λxa and φ(x) → φ′(x) = λ−Dφ(λ−1x) .

Here D is called the scaling dimension of the field. Consider the action for a real scalar

field given by

S =

∫

d4x

(

−1

2
∂aφ∂aφ − 1

2
m2φ2 − gφ p

)

.

Find the scaling dimension D such that the part of S involving the derivative terms is

invariant. For what values of m and p is the scaling (1) a symmetry of the theory. How

do these conclusions change for a scalar field living in an (n+1)-dimensional spacetime

instead of a (3 + 1)-dimensional spacetime?

In 3 + 1 dimensions, use Noether’s theorem to construct the conserved current Da

associated with scaling invariance.

9. Show that in the Heisenberg picture,

φ̇(x) = i[H,φ(x)] = π(x) and π̇(x) = i[H, π(x)] = ∇2φ(x) − m2φ(x) .

Hence show that the operator φ(x) satisfies the Klein-Gordon equation.

10. Let φ(x) be a real scalar field in the Heisenberg picture. Show that the rela-

tivistically normalized one-particle states |p〉 =
√

2E~p a† |0〉 satisfy

〈0|φ(x) |p〉 = eip·x .

Please address any comments, especially about errors and omissions to:

mjp1@cam.ac.uk
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