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Quantum Field Theory: Example Sheet 1
Prof. M. J. Perry, 16 October 2013

1. A string of length a, mass per unit length ¢ and under tension T is fixed at each
end. The Lagrangian governing the time evolution of small transverse displacements

y(x,t) is
L= / de |2 (YY) — 2 (¥
0 2 \ Ot o
where x identifies position along the string from one end point. By expressing the
displacement as a sine series Fourier expansion of the form

e ()

show that the Lagrangian becomes
I = § _ = <n_7r>2 2
(]n a dp | -

Derive the equations of motion. Hence show that the string is equivalent to an infinite
set of decoupled harmonic oscillators with frequencies

o=y T (Y.

g a

2. A string has classical Hamiltonian given by

H = i 2pn+ 2 2)
n=1

where w, is the frequency of the nth mode. Compare this Hamiltonian to the La-
grangian in the previous question. The mass per unit length, o, has now been set to
unity so as to make various formulae somewhat simpler.

After quantization, ¢, and p, become operators satisfying

[Qna Qm] = [pnvpm] =0 and [Qnapm] = Z(Snm .
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Introduce creation and annihilation operators a,, and af,

4y = |22 —i—L and aT—”ﬁ S

Show that they satisfy the commutation relations
[, ] = [al,al 1 =0 and  [a,,al ] = Gpm -

n-'m m

Show that the Hamiltonian of the system can be written in the form

[e.e]

H= Z %wn (anaIL + aILan) .

n=1

Given the existence of a ground state |0) such that a,|0) = 0, explain how, after
removing the vacuum energy, the Hamiltonian can be expressed as

o
— T
H = g W Q) Qo -
n=1

Show further that [H,al] = w, al and hence calculate the energy of the state

Uy doy . Iy) = (d)“ (@)b o (ajV)ZN 10) .

3. Show directly that if ¢(z) satisfies the Klein-Gordon equation, then ¢(A~'z) also
satisfies this equation for any Lorentz transformation A.

4. The motion of a complex field ¢(z) is governed by the Lagrangian density

A
EZ— a¢*aa¢_m2¢*¢_§(¢*¢)2'

Write down the Euler-Lagrange field equations for this system. Verify that the La-
grangian density is invariant under the infinitesimal transformation

0p =iagp , d¢F = —iag®.

Derive the Noether current associated with this transformation and verify explicitly
that it is conserved using the field equation satisfied by ¢.

5. Verify that the Lagrangian density
1 1
EZ__aaaaa__ 2aa
S 0a0a" b0 — St
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for a triplet of real fields ¢, (o = 1,2,3) is invariant under the infinitesimal SO(3)
rotation by 6

P — Qba + 86@[37”,@¢7

where n,, is a constant unit vector. Compute the Noether current j7¢. Deduce that the
three quantities

Qo = /dgx €afy ¢B¢7

are all conserved and verify this directly using the field equations satisfied by ¢,.

6. A Lorentz transformation z* — 2/ = A%x® is such that it preserves the Minkowski
metric 7q, meaning that 1,r%a® = nga’@w™ for all . Show that this implies that

Nab = TlchcaAdb . (*)
Use this result to show that an infinitesimal transformation of the form
A% = 0% + W

b b_ _, ba

is a Lorentz transformation when w® is antisymmetric: i.e. w® —w

Write down the matrix form for w? that corresponds to a rotation through an in-
finitesimal angle # about the z3-axis. Do the same for a boost along the x'-axis by
an infinitesimal velocity v. Deduce the form of a Lorentz transformation for a finite
rotation about the z3-axis, and for a finite boost along the z!-axis by calculating the
exponential of the matrix you found. (Hint: Look carefully at the squares of the ma-
trices.) Verify that your results are indeed Lorentz transformations by checking that

they satisy (*)

7. Consider the infinitesimal form of the Lorentz transformation derived in the previous
question: 7% — z% 4+ w%x®. Show that a scalar field transforms as

¢(a) — ¢/(z) = ¢(x) — w " Bug(2)
and hence show that the variation of the Lagrangian density is a total derivative
6L = =0, (w42 L) .
Using Noether’s theorem deduce the existence of the conserved current

=0 (T2 a").
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The three conserved charges arising from spatial rotational invariance define the total
angular momentum of the field. Show that these charges are given by

Qi = Eijk/dgl' (ijOk — kaoj) .

Derive the conserved charges arising from invariance under Lorentz boosts. Show that
they imply

d .
pr / d®z (2" T") = constant

and interpret this equation.
8 A class of interesting theories are those invariant under the scaling of all lengths
by

g — 2" = X2 and ¢(z) — ¢'(z) = X Po(\ ') .

Here D is called the scaling dimension of the field. Consider the action for a real scalar
field given by

S = /d4x (—% PO — %m2¢2 — g¢p) .

Find the scaling dimension D such that the part of S involving the derivative terms is
invariant. For what values of m and p is the scaling (1) a symmetry of the theory. How
do these conclusions change for a scalar field living in an (n+ 1)-dimensional spacetime
instead of a (3 + 1)-dimensional spacetime?

In 3 + 1 dimensions, use Noether’s theorem to construct the conserved current D*
associated with scaling invariance.

9. Show that in the Heisenberg picture,
Ox) = ilH, 6(x)] = 7(z) and (z) = ilH, 7(z)] = V2o(x) — m*6(x).
Hence show that the operator ¢(x) satisfies the Klein-Gordon equation.

10. Let ¢(x) be a real scalar field in the Heisenberg picture. Show that the rela-
tivistically normalized one-particle states |p) = \/2Ezal |0) satisfy

(0l d() [p) = ™.

Please address any comments, especially about errors and omissions to:
mjpl@cam.ac.uk



