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Quantum Field Theory: Example Sheet 2

Prof M.J. Perry, Halloween 2013.

1. Show that if
{

γa, γb
}

= 2ηab, then

[

γaγb , γcγd
]

= 2ηbcγaγd − 2ηacγbγd + 2ηbdγcγa − 2ηadγcγb .

By expressing Sab = 1
4

[

γa , γb
]

as 1
2
(γaγb − ηab) etc., evaluate

[

Sab , Scd
]

.

2. Show using the results of the previous question that if Si = − i
4
ǫijkγ

jγk, then

[Si, Sj] = iǫijkS
k. Show also that [γ0, Si] = [γ5, Si] = 0, where γ5 = −iγ0γ1γ2γ3.

Show that (S1)
2

= (S2)
2

= (S3)
2

= 1
4
.

Verify these results in the representation used in the lectures. What can you deduce

about rotations and spin in the Dirac field theory?

3. Using just the algebra {γa, γb} = 2ηab (i.e. without resorting to a particular

representation), and defining γ5 = −iγ0γ1γ2γ3, /p = paγ
a and Sab = 1

4

[

γa, γb
]

, prove

the following results:

1. Trγa = 0

2. Tr(γaγb) = 4ηab

3. Tr(γaγbγc) = 0

4. (γ5)
2

= 1

5. Trγ5 = 0

6. /p /q = 2p · q − /q /p = p · q + 2Sabpaqb

7. Tr( /p /q) = 4p · q

8. Tr( /p1 . . . /pn) = 0 if n is odd

9. Tr( /p1 /p2 /p3 /p4) = 4 [(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3) − (p1 · p3)(p2 · p4)]

10. Tr(γ5 /p1 /p2) = 0

11. γa /p γa = −2 /p
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12. γa /p1 /p2γ
a = 4p1 · p2

13. γµ /p1 /p2 /p3γ
µ = −2 /p3 /p2 /p1

14. Tr(γ5 /p1 /p2 /p3 /p4) = −4i ǫabcd pa
1 pb

2 pc
3 pd

4

4. The Weyl representation of the Clifford algebra is

γ0 = −i

(

0 12

12 0

)

, γi = −i

(

0 σi

−σi 0

)

. (1)

Show that these indeed satisfy {γa, γb} = 2ηab1. Find a unitary matrix U such that

(γ′)a = UγaU †, where (γ′)a form the Dirac representation of the Clifford algebra

(γ′)0 = −i

(

12 0

0 −12

)

, (γ′)i = −i

(

0 σi

−σi 0

)

. (2)

5. Starting with the Dirac equation, show that the Dirac conjugate field ψ(x) obeys

∂aψγa − mψ = 0 . (3)

Derive this equation from the Dirac action as the variational equation with respect to

ψ.

Show that V a = ψγaψ is a Noether current, and hence conserved. Show that the

axial vector currrent Aa = ψγaγ5ψ is conserved if m = 0.

6. Explain why one may split any Dirac spinor uniquely into left- and right-handed

spinor parts ψ = ψL + ψR. Show that any gamma matrix γa maps a left-handed into

a right-handed spinor, and vice versa, and deduce that any non-trivial solution of the

Dirac equation with m 6= 0 has both left- and right-handed parts.

Find the plane wave solutions of the massless Dirac equation with purely a left-

handed part. For a given value of the 3-momentum, what is the dimension of the space

of solutions?

7. With the notation as in the lectures show that

∑

s=± 1

2

us(~p)us(~p) = i /p + m (4)

∑

s=± 1

2

vs(~p)vs(~p) = i /p − m (5)

where the two spinors on the left-hand side are placed back to back to form a 4 × 4

matrix.
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8. The Fourier decomposition of the Dirac field operator in the Schrodinger repre-

sentation is ψ(~x) and its conjugate momentum ψ†(~x) is given by

ψ(~x) =

∫

d3p

(2π)3

1
√

2E~p

∑

s=± 1

2

[

as
~p us(~p)ei~p·~x + b

s †
~p vs(~p)e

−i~p·~x
]

ψ†(~x) =

∫

d3p

(2π)3

1
√

2E~p

∑

s=± 1

2

[

a
s †
~p us(~p)

†e−i~p·~x + bs
~p vs(~p)†ei~p·~x

]

. (6)

The creation and annihilation operators are taken to satisfy

{ar
~p, a

s †
~q } = (2π)3δrs δ(3)(~p − ~q)

{br
~p, b

s †
~q } = (2π)3δrs δ(3)(~p − ~q) , (7)

with all other anticommutators vanishing; that is,

{ar
~p, a

s
~q} = {br

~p, b
s
~q} = {ar

~p, b
s †
~q } = {ar

~p, b
s
~q} = . . . = 0 . (8)

Show that these imply that the field and its conjugate momentum satisfy the equal

time anticommutation relations

{ψα(~x), ψβ(~y)} = {ψ†
α(~x), ψ†

β(~y)} = 0

{ψα(~x), ψ†
β(~y)} = δαβ δ(3)(~x − ~y) . (9)

9. Using the results of Question 8, show that the quantum Hamiltonian

H =

∫

d3x ψ̄(γi∂i + m)ψ (10)

can be written, after normal ordering, as

H =

∫

d3p

(2π)3
E~p

2
∑

s=1

[

a
s †
~p as

~p + b
s †
~p bs

~p

]

. (11)

10. The purpose of this question is to give you a glimpse into the spin-statistics

theorem. This theorem roughly says that if you try to quantize a field with the wrong

statistics, bad things will happen. Here we’ll see what goes wrong if you try to quantize

a spin 1/2 Dirac field as a boson. We start with the usual decomposition (6). This time

we choose bosonic commutation relations for the annihilation and creation operators,

[ar
~p, a

s †
~q ] = (2π)3δrs δ(3)(~p − ~q)

[br
~p, b

s †
~q ] = −(2π)3δrs δ(3)(~p − ~q) (12)

3
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with all other commutators vanishing. Note the strange minus sign for the b opera-

tors. Repeat the calculation of Question 5 to show that these are equivalent to the

commutation relations

[ψα(~x), ψβ(~y)] = [ψ†
α(~x), ψ†

β(~y)] = 0

[ψα(~x), ψ†
β(~y)] = δαβ δ(3)(~x − ~y) . (13)

Now repeat the calculation of Question 6, to show that, after normal ordering, the

Hamitonian is given by

H =

∫

d3p

(2π)3
E~p

2
∑

s=1

[

a
s †
~p as

~p − b
s †
~p bs

~p

]

. (14)

This Hamiltonian is not bounded below: you can lower the energy indefinitely by creat-

ing more and more b particles. This is the reason a theory of bosonic spin 1/2 particles

is sick.

11. Using the methods presented in the lectures, find an expression for the Feyn-

man propagator of a Dirac field

SF (x − y) ≡ 〈0|Tψ(x)ψ(y)|0〉 (15)

in terms of the θ-function and integrals over 3-momentum.

Deduce, by evaluating a suitable contour integral, that

SF (x − y) =

∫

d4p

(2π)4
eip.(x−y) iγ.p + m

p2 + m2 − iǫ
. (16)

Verify that SF is a Green’s function for the Dirac operator.

12. The Lagrangian density for an electromagnetic (Maxwell) field is

L = −
1

4
FabF

ab (17)

where Fab = ∂aAb − ∂bAa and Aa is the 4-vector potential. Show that L is invariant

under gauge transformations

Aa → Aa + ∂aξ (18)

where ξ = ξ(x) is a scalar field with arbitrary (differentiable) dependence on x.

4
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Use Noether’s theorem, and the spacetime translational invariance of the action, to

construct the energy-momentum tensor T ab for the electromagnetic field. Show that

the resulting object is neither symmetric nor gauge invariant. Consider a new tensor

given by

Θab = T ab − F ca ∂cA
b . (19)

Show that this object also defines four conserved currents. Moreover, show that it is

symmetric, gauge invariant and traceless.

Comment: T ab and Θab are both equally good definitions of the energy-momentum

tensor. However Θab clearly has the nicer properties. Moreover, if you couple an electro-

magnetic field to general relativity then it is Θab which appears in Einstein’s equations.

13. The Lagrangian density for a massive vector field Ca is given by

L = −
1

4
FabF

ab −
1

2
m2CaC

a (20)

where Fab = ∂aCb − ∂bCa. Derive the equations of motion and show that when m 6= 0

they imply

∂aC
a = 0 . (21)

Further show that C0 can be eliminated completely in terms of the other fields by

solving

∂i∂
i C0 + m2C0 = ∂iĊi . (22)

Construct the canonical momenta Πi conjugate to Ci, i = 1, 2, 3 and show that the

canonical momentum conjugate to C0 is vanishing. Construct the Hamiltonian density

H in terms of C0, Ci and Πi. (Note: Do not be concerned that the canonical momen-

tum for C0 is vanishing. C0 is non-dynamical — it is determined entirely in terms of

the other fields using equation (22).)
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