Quantum Field Theory: Example Sheet 2

Prof M.J. Perry, Halloween 2013.

1. Show that if $\{\gamma^a, \gamma^b\} = 2\eta^{ab}$, then

$$\left[\gamma^a\gamma^b\,,\,\gamma^c\gamma^d\right] = 2\eta^{bc}\gamma^a\gamma^d - 2\eta^{ac}\gamma^b\gamma^d + 2\eta^{bd}\gamma^c\gamma^a - 2\eta^{ad}\gamma^c\gamma^b\,.$$

By expressing $S^{ab} = \frac{1}{4} \left[\gamma^a , \gamma^b \right]$ as $\frac{1}{2} (\gamma^a \gamma^b - \eta^{ab})$ etc., evaluate $\left[S^{ab} , S^{cd} \right]$.

2. Show using the results of the previous question that if $S^i = -\frac{i}{4}\epsilon_{ijk}\gamma^j\gamma^k$, then $[S^i, S^j] = i\epsilon_{ijk}S^k$. Show also that $[\gamma^0, S^i] = [\gamma^5, S^i] = 0$, where $\gamma^5 = -i\gamma^0\gamma^1\gamma^2\gamma^3$. Show that $(S^1)^2 = (S^2)^2 = (S^3)^2 = \frac{1}{4}$.

Verify these results in the representation used in the lectures. What can you deduce about rotations and spin in the Dirac field theory?

- **3.** Using just the algebra $\{\gamma^a, \gamma^b\} = 2\eta^{ab}$ (i.e. without resorting to a particular representation), and defining $\gamma^5 = -i\gamma^0\gamma^1\gamma^2\gamma^3$, $\not p = p_a\gamma^a$ and $S^{ab} = \frac{1}{4} \left[\gamma^a, \gamma^b\right]$, prove the following results:
 - 1. $\text{Tr}\gamma^a = 0$
 - 2. $\operatorname{Tr}(\gamma^a \gamma^b) = 4\eta^{ab}$
 - 3. $\operatorname{Tr}(\gamma^a \gamma^b \gamma^c) = 0$
 - 4. $(\gamma^5)^2 = 1$
 - 5. $\text{Tr}\gamma^5 = 0$
 - 6. $p \not q = 2p \cdot q \not q \not p = p \cdot q + 2S^{ab}p_aq_b$
 - 7. $\operatorname{Tr}(p \not q) = 4p \cdot q$
 - 8. Tr($p_1 \dots p_n$) = 0 if n is odd
 - 9. Tr($p_1 p_2 p_3 p_4$) = 4 [$(p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) (p_1 \cdot p_3)(p_2 \cdot p_4)$]
 - 10. $\operatorname{Tr}(\gamma^5 \not p_1 \not p_2) = 0$
 - 11. $\gamma_a \not\! p \gamma^a = -2 \not\! p$

- 12. $\gamma_a \not p_1 \not p_2 \gamma^a = 4p_1 \cdot p_2$
- 13. $\gamma_{\mu} \not p_1 \not p_2 \not p_3 \gamma^{\mu} = -2 \not p_3 \not p_2 \not p_1$
- 14. $\operatorname{Tr}(\gamma^5 \not p_1 \not p_2 \not p_3 \not p_4) = -4i \epsilon_{abcd} p_1^a p_2^b p_3^c p_4^d$
- 4. The Weyl representation of the Clifford algebra is

$$\gamma^0 = -i \begin{pmatrix} 0 & 1_2 \\ 1_2 & 0 \end{pmatrix} \quad , \quad \gamma^i = -i \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} . \tag{1}$$

Show that these indeed satisfy $\{\gamma^a, \gamma^b\} = 2\eta^{ab}\mathbf{1}$. Find a unitary matrix U such that $(\gamma')^a = U\gamma^aU^{\dagger}$, where $(\gamma')^a$ form the Dirac representation of the Clifford algebra

$$(\gamma')^0 = -i \begin{pmatrix} 1_2 & 0 \\ 0 & -1_2 \end{pmatrix} \quad , \quad (\gamma')^i = -i \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} . \tag{2}$$

5. Starting with the Dirac equation, show that the Dirac conjugate field $\overline{\psi}(x)$ obeys

$$\partial_a \overline{\psi} \gamma^a - m \overline{\psi} = 0. {3}$$

Derive this equation from the Dirac action as the variational equation with respect to ψ .

Show that $V^a = \overline{\psi} \gamma^a \psi$ is a Noether current, and hence conserved. Show that the axial vector current $A^a = \overline{\psi} \gamma^a \gamma^5 \psi$ is conserved if m = 0.

6. Explain why one may split any Dirac spinor uniquely into left- and right-handed spinor parts $\psi = \psi_L + \psi_R$. Show that any gamma matrix γ^a maps a left-handed into a right-handed spinor, and vice versa, and deduce that any non-trivial solution of the Dirac equation with $m \neq 0$ has both left- and right-handed parts.

Find the plane wave solutions of the massless Dirac equation with purely a left-handed part. For a given value of the 3-momentum, what is the dimension of the space of solutions?

7. With the notation as in the lectures show that

$$\sum_{s=\pm \frac{1}{2}} u_s(\vec{p}) \overline{u}_s(\vec{p}) = i \not p + m \tag{4}$$

$$\sum_{s=\pm\frac{1}{2}} v_s(\vec{p}) \overline{v}_s(\vec{p}) = i \not p - m$$
 (5)

where the two spinors on the left-hand side are placed back to back to form a 4×4 matrix.

8. The Fourier decomposition of the Dirac field operator in the Schrodinger representation is $\psi(\vec{x})$ and its conjugate momentum $\psi^{\dagger}(\vec{x})$ is given by

$$\psi(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \sum_{s=\pm\frac{1}{2}} \left[a_{\vec{p}}^s u_s(\vec{p}) e^{i\vec{p}\cdot\vec{x}} + b_{\vec{p}}^{s\dagger} v_s(\vec{p}) e^{-i\vec{p}\cdot\vec{x}} \right]$$

$$\psi^{\dagger}(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \sum_{s=\pm\frac{1}{2}} \left[a_{\vec{p}}^{s\dagger} u_s(\vec{p})^{\dagger} e^{-i\vec{p}\cdot\vec{x}} + b_{\vec{p}}^s v_s(\vec{p})^{\dagger} e^{i\vec{p}\cdot\vec{x}} \right]. \tag{6}$$

The creation and annihilation operators are taken to satisfy

$$\{a_{\vec{p}}^r, a_{\vec{q}}^{s\dagger}\} = (2\pi)^3 \delta^{rs} \, \delta^{(3)}(\vec{p} - \vec{q})
 \{b_{\vec{p}}^r, b_{\vec{q}}^{s\dagger}\} = (2\pi)^3 \delta^{rs} \, \delta^{(3)}(\vec{p} - \vec{q}),$$
(7)

with all other anticommutators vanishing; that is,

$$\{a_{\vec{p}}^r, a_{\vec{q}}^s\} = \{b_{\vec{p}}^r, b_{\vec{q}}^s\} = \{a_{\vec{p}}^r, b_{\vec{q}}^{s\dagger}\} = \{a_{\vec{p}}^r, b_{\vec{q}}^s\} = \dots = 0.$$
 (8)

Show that these imply that the field and its conjugate momentum satisfy the equal time anticommutation relations

$$\{\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\} = \{\psi_{\alpha}^{\dagger}(\vec{x}), \psi_{\beta}^{\dagger}(\vec{y})\} = 0$$

$$\{\psi_{\alpha}(\vec{x}), \psi_{\beta}^{\dagger}(\vec{y})\} = \delta_{\alpha\beta} \delta^{(3)}(\vec{x} - \vec{y}).$$
 (9)

9. Using the results of Question 8, show that the quantum Hamiltonian

$$H = \int d^3x \ \bar{\psi}(\gamma^i \partial_i + m)\psi \tag{10}$$

can be written, after normal ordering, as

$$H = \int \frac{d^3p}{(2\pi)^3} E_{\vec{p}} \sum_{s=1}^{2} \left[a_{\vec{p}}^{s\dagger} a_{\vec{p}}^s + b_{\vec{p}}^{s\dagger} b_{\vec{p}}^s \right] . \tag{11}$$

10. The purpose of this question is to give you a glimpse into the spin-statistics theorem. This theorem roughly says that if you try to quantize a field with the wrong statistics, bad things will happen. Here we'll see what goes wrong if you try to quantize a spin 1/2 Dirac field as a boson. We start with the usual decomposition (6). This time we choose bosonic commutation relations for the annihilation and creation operators,

$$[a_{\vec{p}}^r, a_{\vec{q}}^{s\dagger}] = (2\pi)^3 \delta^{rs} \delta^{(3)}(\vec{p} - \vec{q})$$

$$[b_{\vec{p}}^r, b_{\vec{q}}^{s\dagger}] = -(2\pi)^3 \delta^{rs} \delta^{(3)}(\vec{p} - \vec{q})$$
(12)

with all other commutators vanishing. Note the strange minus sign for the b operators. Repeat the calculation of Question 5 to show that these are equivalent to the commutation relations

$$[\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})] = [\psi_{\alpha}^{\dagger}(\vec{x}), \psi_{\beta}^{\dagger}(\vec{y})] = 0$$
$$[\psi_{\alpha}(\vec{x}), \psi_{\beta}^{\dagger}(\vec{y})] = \delta_{\alpha\beta} \,\delta^{(3)}(\vec{x} - \vec{y}). \tag{13}$$

Now repeat the calculation of Question 6, to show that, after normal ordering, the Hamitonian is given by

$$H = \int \frac{d^3p}{(2\pi)^3} E_{\vec{p}} \sum_{s=1}^{2} \left[a_{\vec{p}}^{s\dagger} a_{\vec{p}}^s - b_{\vec{p}}^{s\dagger} b_{\vec{p}}^s \right] . \tag{14}$$

This Hamiltonian is not bounded below: you can lower the energy indefinitely by creating more and more b particles. This is the reason a theory of bosonic spin 1/2 particles is sick.

11. Using the methods presented in the lectures, find an expression for the Feynman propagator of a Dirac field

$$S_F(x-y) \equiv \langle 0| \mathrm{T}\psi(x)\overline{\psi}(y)|0\rangle \tag{15}$$

in terms of the θ -function and integrals over 3-momentum.

Deduce, by evaluating a suitable contour integral, that

$$S_F(x-y) = \int \frac{d^4p}{(2\pi)^4} e^{ip.(x-y)} \frac{i\gamma \cdot p + m}{p^2 + m^2 - i\epsilon} . \tag{16}$$

Verify that S_F is a Green's function for the Dirac operator.

12. The Lagrangian density for an electromagnetic (Maxwell) field is

$$\mathcal{L} = -\frac{1}{4}F_{ab}F^{ab} \tag{17}$$

where $F_{ab} = \partial_a A_b - \partial_b A_a$ and A_a is the 4-vector potential. Show that \mathcal{L} is invariant under gauge transformations

$$A_a \to A_a + \partial_a \xi \tag{18}$$

where $\xi = \xi(x)$ is a scalar field with arbitrary (differentiable) dependence on x.

Use Noether's theorem, and the spacetime translational invariance of the action, to construct the energy-momentum tensor T^{ab} for the electromagnetic field. Show that the resulting object is neither symmetric nor gauge invariant. Consider a new tensor given by

$$\Theta^{ab} = T^{ab} - F^{ca} \,\partial_c A^b \,. \tag{19}$$

Show that this object also defines four conserved currents. Moreover, show that it is symmetric, gauge invariant and traceless.

Comment: T^{ab} and Θ^{ab} are both equally good definitions of the energy-momentum tensor. However Θ^{ab} clearly has the nicer properties. Moreover, if you couple an electromagnetic field to general relativity then it is Θ^{ab} which appears in Einstein's equations.

13. The Lagrangian density for a massive vector field C_a is given by

$$\mathcal{L} = -\frac{1}{4}F_{ab}F^{ab} - \frac{1}{2}m^2C_aC^a \tag{20}$$

where $F_{ab} = \partial_a C_b - \partial_b C_a$. Derive the equations of motion and show that when $m \neq 0$ they imply

$$\partial_a C^a = 0. (21)$$

Further show that C_0 can be eliminated completely in terms of the other fields by solving

$$\partial_i \partial^i C_0 + m^2 C_0 = \partial^i \dot{C}_i \,. \tag{22}$$

Construct the canonical momenta Π_i conjugate to C_i , i = 1, 2, 3 and show that the canonical momentum conjugate to C_0 is vanishing. Construct the Hamiltonian density \mathcal{H} in terms of C_0 , C_i and Π_i . (Note: Do not be concerned that the canonical momentum for C_0 is vanishing. C_0 is non-dynamical — it is determined entirely in terms of the other fields using equation (22).)