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Quantum Field Theory: Example Sheet 2

Prof M.J. Perry, Halloween 2013.

1. Show that if {’y“, ’yb} = 21 then

[,Ya,yb’ f}/c’}/d] — 2nbc,ya,yd o 2na67b7d T 2nbd,yc,ya o 277ad,yc,yb )

By expressing 5% = 1 [y, 7*] as (74" — ) etc., evaluate [S®, 5.

2. Show using the results of the previous question that if S¢ = —ieijkfyjfyk, then
[S%, S7] = ie;;xS*. Show also that [y°, S| = [7°, S'] = 0, where 7° = —iy%91y243.
Show that (S1)* = (S%)* = (5%)* = 1.

Verify these results in the representation used in the lectures. What can you deduce
about rotations and spin in the Dirac field theory?

3. Using just the algebra {7¢, 7°} = 2n? (i.e. without resorting to a particular
representation), and defining v° = —iy%y'92®, Jf = p,7* and S = 1 [v%, 4], prove
the following results:

1. Try* =0
- Tr(y"9") = 4n®

3. Tr(y*y*7¢) =0

[\

4 () =1

5. Try® =0

6. ¥d=2p-9— 4 #=p-q+25"Daqs
7. Te(p ) =4p-q

(#y... #,) =0if nis odd

%
=

9. Tr(# Yo W3 ¥a) = 4[(01 - P2)(P3 - pa) + (D1 - Pa) (P2 - P3) — (D1 - 3) (P2 - Pa)]
10. Tr('y5 ¢1 2?/2) =0

1. 7§y = -2y
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12, 7ot YY" = 4p1 - 2
13. Y. o s = =23 Yo

14. Te(v> Py thy s ) = —4i €apea 2 DY D5 11

4. The Weyl representation of the Clifford algebra is

) 0 1o . ) 0 ot

0 7

= — , = —1 . . 1
R ( 1, 0 ) 7 ( —o' 0 ) (1)

Show that these indeed satisfy {7%,7°} = 27%1. Find a unitary matrix U such that
(7)* = Uy2UT, where (1) form the Dirac representation of the Clifford algebra

A l, 0 N 0 o
(V)" = (0 _12) , ()= (—ai 0)- (2)

5. Starting with the Dirac equation, show that the Dirac conjugate field 1)(z) obeys
Dty —map = 0. (3)

Derive this equation from the Dirac action as the variational equation with respect to
1.

Show that V¢ = 1)7y%) is a Noether current, and hence conserved. Show that the
axial vector currrent A% = 1)y*y°1 is conserved if m = 0.

6. Explain why one may split any Dirac spinor uniquely into left- and right-handed
spinor parts ¥ = ¢y, + ¥g. Show that any gamma matrix v* maps a left-handed into
a right-handed spinor, and vice versa, and deduce that any non-trivial solution of the
Dirac equation with m # 0 has both left- and right-handed parts.

Find the plane wave solutions of the massless Dirac equation with purely a left-
handed part. For a given value of the 3-momentum, what is the dimension of the space
of solutions?

7. With the notation as in the lectures show that

S w@ap) = igtm (4)

vs(P)0s(p) = iy —m (5)

where the two spinors on the left-hand side are placed back to back to form a 4 x 4
matrix.
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8. The Fourier decomposition of the Dirac field operator in the Schrodinger repre-
sentation is ¥ (%) and its conjugate momentum (%) is given by

d3 o g
V(@) = / 2B [azsﬁus (p)e™" + b;T Vs (]7)67”””]
s= :t%
S d3p 1
f = to—ipT 4 ps t P
v / (2r) \2E; =, a5 ) by ()17 (6)

The creation and annihilation operators are taken to satisfy
{ag, asT} = (2m)36" 0¥ (p— @)
{5 b5y = (@)% 6 (- ), (7)

with all other anticommutators vanishing; that is,

{a’p7 q} {b;,b;} {ap7bST} {ap7 q}_ = (8)

Show that these imply that the field and its conjugate momentum satisfy the equal
time anticommutation relations

{¥a(@), ¥s()} = {L4(@), ¥5(H)} =
{¥a(D), VL)} = 6ap 6@ (T — 7). 9)

9. Using the results of Question 8, show that the quantum Hamiltonian

H= /d% V(Y'0; +m)a (10)
can be written, after normal ordering, as
dgp = st s st1s
:/WEﬁZ[% as+ 0513 . (11)
s=1

10. The purpose of this question is to give you a glimpse into the spin-statistics
theorem. This theorem roughly says that if you try to quantize a field with the wrong
statistics, bad things will happen. Here we’ll see what goes wrong if you try to quantize
a spin 1/2 Dirac field as a boson. We start with the usual decomposition (6). This time
we choose bosonic commutation relations for the annihilation and creation operators,

lap,a5’] = (20)°6" 60 (5~ @)
by 0511 = —(2n)%6" 60 (5~ @) (12)

3
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with all other commutators vanishing. Note the strange minus sign for the b opera-
tors. Repeat the calculation of Question 5 to show that these are equivalent to the
commutation relations

[Wal@), a(7)] = [WL(2), (3] =0
[al(@), V()] = 0as 00(F — 5) (13)

Now repeat the calculation of Question 6, to show that, after normal ordering, the
Hamitonian is given by

43
H= / ( 2;;3 Ep > |aptas —v3tor] . (14)

s=1

This Hamiltonian is not bounded below: you can lower the energy indefinitely by creat-
ing more and more b particles. This is the reason a theory of bosonic spin 1/2 particles
is sick.

11. Using the methods presented in the lectures, find an expression for the Feyn-
man propagator of a Dirac field

Sp(x —y) = (0]Te(2)d(y)|0) (15)

in terms of the f-function and integrals over 3-momentum.

Deduce, by evaluating a suitable contour integral, that

d*p . iy.p+m
So(r — ) = ple—y) 21 TR 16
r(z=y) / (27r)46 P2+ m? —ie (16)

Verify that Sg is a Green’s function for the Dirac operator.

12. The Lagrangian density for an electromagnetic (Maxwell) field is

1
L= -7 L F (17)

where F, = 0,A, — 0,A, and A, is the 4-vector potential. Show that £ is invariant
under gauge transformations

Ay — Aa+ 0u€ (18)

where £ = £(z) is a scalar field with arbitrary (differentiable) dependence on x.

4
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Use Noether’s theorem, and the spacetime translational invariance of the action, to
construct the energy-momentum tensor 7% for the electromagnetic field. Show that
the resulting object is neither symmetric nor gauge invariant. Consider a new tensor
given by

©% = T — Fe* 9,A" (19)

Show that this object also defines four conserved currents. Moreover, show that it is
symmetric, gauge invariant and traceless.

Comment: 7% and ©% are both equally good definitions of the energy-momentum
tensor. However ©% clearly has the nicer properties. Moreover, if you couple an electro-
magnetic field to general relativity then it is @ which appears in Einstein’s equations.

13. The Lagrangian density for a massive vector field C, is given by

1 1
=__F, Fab T2 A a 2
L Lo 2m c,C (20)
where F,, = 0,Cy — 0,C,. Derive the equations of motion and show that when m # 0

they imply
2,C*=0. (21)

Further show that Cy can be eliminated completely in terms of the other fields by
solving

Construct the canonical momenta II; conjugate to C;, ¢« = 1,2,3 and show that the
canonical momentum conjugate to Cy is vanishing. Construct the Hamiltonian density
H in terms of Cy, C; and II;. (Note: Do not be concerned that the canonical momen-
tum for Cjy is vanishing. Cj is non-dynamical — it is determined entirely in terms of
the other fields using equation (22).)



