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Exercise 1

We will use the convetion that the Lorentz generators are

Sµν =
1

4
[γµ, γν ] . (1)

Note this implies that the finite transformations would be

D [Λ]
α
β = exp

[
1

2
Ωµν (Sµν)

α
β

]
(2)

The object is to show that the Sµν defined below generate a representation of the Lie algebra so(3, 1), the Lie algebra of the
Lorentz group SO(3, 1).

[γκγλ, γµγν ] = γκγλγµγν − γµγνγκγλ

= γκ
{
γλ, γµ

}
γν − γκγµγλγν − γµγνγκγλ

= 2gλµγκγν − {γκ, γµ} γλγν + γµγκγλγν − γµγνγκγλ

= 2gλµγκγν − 2gκµγλγν + γµγκ
{
γν , γλ

}
− γµγνγκγλ

= 2gλµγκγν − 2gκµγλγν + 2gµκγνγλ − γµ {γκ, γν} γλ + γµγνγκγλ − γµγνγκγλ

= 2gλµγκγν − 2gκµγλγν + 2gµκγνγλ − 2gκνγµγλ

Now, to perform the main computation of interest, write Sµν = 1
4 [γµ, γν ] in a slightly more convenient form,

Sκλ =
1

4
[γκ, γλ] =

1

4

{
γκγλ − γλγka

)
=

1

4

(
γκγλ −

{
γλ, γκ

}
+ γκγλ

)
=

1

2

(
γκγλ − gκλ

)
.

This allows us to calculate that

[Sκλ, Sµν ] =
1

2
[γκγλ, γµγν ]

=
1

2

(
gλµγκγν − gκµγλγν + gµκγνγλ − gκνγµγλ

)
= gλµSκν +

1

2
gλµgκν − gµκSλν − 1

2
gµκgλν + gλνSµκ +

1

2
gλνgµκ − gκνSµλ − 1

2
gκνgµλ

= gλµSκν − gµκSλν + gλνSµκ − gκνSµλ (3)

The Sµν thus define a representation of so(3, 1), called the spin representation - it is not irreducible (see next exercise).

Exercse 2

We use the brackets (3) worked out in the previous exercise, but first write

Si =
i

4
εijkγ

jγk =
i

4
εijk

(
γjγk − δjk

)
=

i

2
εijkS

jk,
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where skew symmetry of εijk allows us to insert the symmetric term δij . Thus

[Si, Sj ] = −1

4
εiklεjmn[Skl, Smn]

= −1

4
εiklεjmn

(
δlmSkn − δkmSln + δlnSmk − δknSml

)
= −1

4

(
εiklεjlnS

kn − εiklεiknSln + εiklεjmlS
mk − εiklεjmkSml

)
.

Relabeling indices in the final three terms and permuting in the alternating symbols, we have

[Si, Sj ] = −1

4

(
εiklεjlnS

kn − εilkεilnSkn + εiklεjnlS
nk − εilnεjnlSnk

)
= −εiklεjlnSkn

= εiklεjnlS
kn

= (δijδkn − δinδkj)Skn

= −Sji
= Sij ,

where in the final two steps the obvious skew-symmetry Skn = −Snk was employed, so that, in the penultimate step,
Sknδkn = 0. To obtain the desired result, consider

iεijkS
k = −1

2
εijkεklnS

ln =
1

2
εijkεnlkS

ln =
1

2
(δimδjl − δilδjm)Sln

=
1

2
(Sij − Sji)

= Sij

Thus
[Si, Sj ] = iεijkS

k,

and we see that the Si furnish a representation of the Lie algebra of the rotation group in three dimensions, so(3) ∼= su(2).

Since γ0γi = −γiγ0,

γ0Si =
i

4
εijkγ

0γjγk = +
i

4
εijkγ

jγkγ0 = Siγ0

i.e. [γ0, Si] = 0.

Using the claim below, the same reasoning demonstrates that [γ5, Si] = 0.

Claim: {
γ5, γµ

}
= 0 (4)

This is straightforward to prove: since γµ anti-commutes with γν whenever µ 6= ν, we can commute γµ past the three γν in
γ5 for which µ 6= ν and pick up a factor of (−1)3 = −1.

Mathematical Remark: In fact, the previous argument demonstrates that [γ5, Sµν ] = 0, which in turn tells us that
the representation of so(3, 1) furnished by the Sµν is reducible: since (γ5)2 = 1 (see Exercise 10) it follows that
the space of Dirac spinors (i.e. C4) splits into eigensubspaces of γ5 with eigenvalues ±1; the identity [γ5, Sµν ] = 0
shows that the action of the Sµν preserves this eigenspace decomposition, i.e. sends all Dirac spinors of γ5

eigenvalue ±1 into a spinor with the same eigenvalue. These eigenspaces are thus proper invariant subspaces, and
so the representation is reducible.
More generally, this is a feature of even dimensions - in odd dimensions the representation defined here is indeed
irreducible. See Michelson & Lawson, Spin Geometry for full details.

Fixing i ∈ {1, 2, 3}, there are j, k ∈ {1, 2, 3} uniquely defined by j, k 6= i and j < k. Then, without any implicit summations,

Si =
i

4
εijk

(
γjγk − γkγj

)
.

Then as εijk = ±1, (εijk)2 = +1, so

(Si)2 = − 1

16

(
γjγkγjγk + γkγjγkγj − γj(γk)2γj − γk(γj)2γk

)
.
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Now, in the first two terms use that γjγk = −γkγj , whenever j 6= k, so that, as (γl)2 = −I,

Si = − 1

16

(
−(γj)2(γk)2 − (γk)2(γj)2 − γj(γk)2γj − γk(γj)2γk

)
= − 1

16
(−4 I) =

1

4
I

Consider the following 4-dimensional representation of the Clifford algebra

γ0 =

(
I2 0
0 −I2

)
γi =

(
0 σi

−σi 0

)
,

where, for reference,

(σi) =

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
and these satisfy

σiσj = δijI2 + iεijkσk, (5)

so that, in particular, {
σi, σj

}
= 2δijI2 , [σi, σj ] = 2iεijkσk. (6)

The Si having the following matrix representatives

Si =
i

4
εijkγ

jγk =
i

4
εijk

(
−σjσk 0

0 −σjσk
)
.

According to (5),

εijkσ
jσk = iεijkεjklσ

l = i (δilδjj − δijδjl)σl = 2iσi.

So that

Si =
1

2

(
σi 0
0 σi

)
.

Then by (6),

[Si, Sj ] =
1

4

(
[σi, σj ] 0

0 [σi, σj ]

)
=

1

4

(
2iεijkσ

k 0
0 2iεijkσ

k

)
= iεijk

{
1

2

(
σk 0
0 σk

)}
= iεijkS

k,

as desired.

From (6), (σi)2 = +1, so

(Si)2 =
1

4

(
(σi)2 0

0 (σi)2

)
=

1

4
I2

γ5 = iγ0γ1γ2γ3 = i

(
I2 0
0 −I2

)(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)(
0 σ3

−σ3 0

)
= i

(
0 −σ1σ2σ3

−σ1σ2σ3 0

)

σ1σ2σ3 =

(
0 1
1 0

)(
0 −i
i 0

)(
1 0
0 −1

)
= i I2

γ5 =

(
0 I2
I2 0

)
[γ5, Si] =

1

2

[(
0 σi

σi 0

)
−
(

0 σi

σi 0

)]
= 0

Likewise, [γ0, Si] = 0.

Since so(3) (the Lie algebra of the rotation group, SO(3)) is a sub-algebra of the Lorentz algebra, these calculations tell us
that by restricting the above representation of so(1, 3) to a representation of so(3), we obtain two copies of the usual spin half
representation encountered in non-relativistic physics. In other words, Dirac spinors furnish the (reducible) representation
of 1

2 ⊕
1
2 of so(3) and thus have spin 1

2 .

Notice that although we have exhibited the representation of so(3) ≤ so(1, 3) as a sum of irreducibles, i.e. the matrices Si

generating so(3) are block diagonal, this does not show is explicitly that the representation of so(1, 3) constructed here is
reducible (as claimed above) since the S0i are in fact not block diagonal in this representation (additional exercise: show
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this).

A representation where γ5 is block diagonal ensures all Sµν are block diagonal as well. The so called chiral representation
with

γ0 =

(
0 I2
I2 0

)
γi =

(
0 σi

−σi 0

)
(7)

achieves this (additional exercise: show this).

Exercise 3

As the identity (γ5)2 = I is used in numerous places throughout the following calculations, it is more logical to prove this
first. Picking up various factors of −1 from commuting factors, we have

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3

= −(−1)3(γ0)2γ1γ2γ3γ1γ2γ3

= +(−1)2(γ0)2(γ1)2γ2γ3γ2γ3

= −(γ0)2(γ1)2(γ2)2(γ3)2,

and, finally, using (γ0)2 = +I, (γi)2 = −I, we see that (γ5)2 = I.

1. We prove instead that
Tr (γµ1 · · · γµ2k+1) = 0 , k ∈ N,

as this accounts for this Exercise and Exercises 3 and 8 also.

We begin by inserting a factor of (γ5)2 = I into the far right of the trace and use the cyclicity of the trace to move one
of these factors of γ5 to the far left,

Tr (γµ1 · · · γµ2k+1) = Tr
(
γµ1 · · · γµ2k+1(γ5)2

)
= Tr

(
γ5γµ1 · · · γµ2k+1γ5

)
.

Now use the identity (4) to begin anti-commuting this γ5 past each factor of γµi to its right.

Tr (γµ1 · · · γµ2k+1) = (−1)Tr
(
γµ1γ5γ2 · · · γµ2k+1γ5

)
= (−1)2k+1Tr

(
γµ1 · · · γµ2k+1γ5γ5

)
= (−1)2k+1Tr

(
γµ1 · · · γµ2k+1(γ5)2

)
= −Tr (γµ1 · · · γµ2k+1)

⇒ Tr (γµ1 · · · γµ2k+1) = 0 (8)

where in the penultimate step, we use (γ5)2 = I again.

2. Splitting the product γµγν into symmetric and skew-symmetric parts, we have

Tr (γµγν) = Tr

(
1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
=

1

2
Tr {γµ, γν}+

1

2
Tr [γµ, γν ]

The second term vanishes since the identity Tr(XY ) = Tr(Y X) implies

0 = Tr(XY )− Tr(Y X) = Tr (XY − Y X)) = Tr [X,Y ].

Using the defining relation of the Clifford algebra, this then gives

Tr (γµγν) = Tr (gµνI4)

= 4gµν (9)

5. Here, insert a factor of (γ0)2 = I and anti-commute as before

Tr γ5 = Tr
(
γ5(γ0)2

)
= −Tr

(
γ0γ5γ0

)
= −Tr

(
γ5(γ0)2

)
⇒ Tr γ5 = 0 (10)
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6. As was done previously, split the product γµγν into symmetric and skew-symmetric parts and then use the Clifford
relations,

6p6q =
1

2
pµqν ({γµ, γν}+ [γµ, γν ])

=
1

2
pµqν (2gµνI + 4Sµν)

= p · q I + 2Sµνpµqν .

This time simply anti-commute factors,

6p 6q = pµqνγ
µγν

= pµqν ({γµ, γν} − γνγµ)

= pµqν (2gµν I− γνγµ)

= 2p · q − 6q 6p

7. Clearly, by (9),
Tr(6p 6q) = pµqνTr (γµγν) = 4pµqνg

µν = 4p · q

8. Clearly
Tr
(
6p1 · · · 6p2k+1

)
= p1µ1 · · · p2k+1

µ2k+1
Tr (γµ1 · · · γµ2k+1) ,

which vanishes by (8).

9. As before, we use cyclicity of the trace and then perform a sequence of anti-commutations to move a factor back to its
original position,

Tr (γµγνγργσ) = Tr (γσγµγνγρ) = Tr ({γσ, γµ} γνγρ − γµγσγνγρ)
= 2gσµTr (γνγρ)− Tr (γµ {γσ, γν} γρ) + Tr (γµγνγσγρ)

= 2gσµTr (γνγρ)− 2gσνTr (γµγρ) + Tr (γµγν {γσ, γρ})− Tr (γµγνγργσ)

⇒ Tr (γµγνγργσ) = gσµTr (γνγρ)− gσνTr (γµγρ) + gσρTr (γµγν)

= 4 (gσµgνρ − gσνgµρ + gσρgµν)

Contracting this identity with p1, p2, p3, p4 gives the desired result.

10. First,

Tr
(
γ5γµγν

)
= −Tr

(
γµγ5γν

)
= −Tr

(
γ5γνγµ

)
,

so that Tr
(
γ5γµγν

)
is skew in µ ν. To calculate this trace we need therefore only look at the cases µ = i, ν = 0 and

µ = i, ν = j, i 6= j. First, for µ = i, ν = 0,

Tr
(
γ5γ0γi

)
= iTr

(
(γ0)2γ1γ2γ3γi

)
= iTr

(
γ1γ2γ3γi

)
As γi appears somewhere in the product γ1γ2γ3, it may be commuted through the relevant factors until we obtain a
square (γi)2 = −I. Thus, up to sign, we have, for j < k and j, k 6= i,

Tr
(
γ5γiγ0

)
= ±iTr

(
γjγk

)
= ±4iδjk = 0,

where the result (9) has been used.

When µ = i, ν = j, i 6= j, we similarly have, for k 6= i, j,

Tr
(
γ5γiγj

)
= ±iTr

(
γ0γk

)
= ±2ig0k = 0,

again by (9).

11. Again, perform anti-commutations and use the Clifford relations,

γµ 6pγµ = γνγσγµgνµpσ = γν {γσ, γµ} gνµpσ − γνγµγσgνµpσ

= 2γνgσµgνµpσ − gνµ
(

1

2
{γν , γµ}+

1

2
[γν , γµ]

)
γσpσ

= 2 6p− gνµgνµ 6p
= −26p, (11)

where in the third line
gνµ[γν , γµ] = 0,

since gνµ is symmetric ν µ yet [γν , γµ] is skew.
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12. Using (11) in the second line,

γµ 6p1 6p2γµ = γµ 6p1{6p1, γµ} − γµ 6p1γµ 6p2
= 2γµ 6p1pµ2 + 2 6p1 6p2
= 2 6p2 6p1 + 2 6p1 6p2
= 2{6p2, 6p1}
= 4p · q (12)

13. Using (12),

γµ 6p1 6p2 6p3γµ = γµ 6p1 6p2{6p3, γµ} − γµ 6p1 6p2γµ 6p3
= 2 6p3 6p1 6p2 − 4p1 · p2 6p3
= 2 6p3{6p1, 6p2} − 26p3 6p2 6p1 − 4p1 · p2 6p3
= −26p3 6p2 6p1.

14. We show first that
Sµνρσ ≡ Tr

(
γ5γµγνγργσ

)
= Tr

(
γ5γ[µγνγργσ]

)
,

so that, as a totally skew contravariant 4-tensor in 4 dimensions, Sµνρσ must be proportional to the alternating tensor
εµνρσ.

We can show this for adjacent pairs of indices since, for instance,

Tr
(
γ5γµγνγργσ

)
= Tr

[
γ5
(

1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
γργsi

]
= gµνTr

(
γ5γργσ

)
+

1

2
Tr
(
γ5[γµ, γν ]γργσ

)
,

the first term of which vanishes by the identity (10), leaving the term skew in µ ν. This then implies that Sµνρσ is
totally skew since, for instance,

Sρνµσ = −Sνρµσ = +Sνµρσ = −Sµνρσ.

Recall that the alternating tensor εµνρσ is defined by

εµνρσ = εαβγδg
αµgβνgγρgδσ

where ε0123 = +1. Therefore
ε0123 = εαβγδg

α0gβ1gγ2gδ3 = det (g) = −1.

Thus

Sµνρσ = −εµνρσTr
(
γ5γ0γ1γ2γ3

)
= iεµνρσTr

(
(γ5)2

)
= iεµνρσTr(I4)

= 4iεµνρσ

Exercise 4

The Weyl (or chiral) representation of the Clifford algebra is defined by the matrices

γ0 = −i
(

0 I2
I2 0

)
, γi = −i

(
0 σi

−σi 0

)
This may be written more concisely as

γµ = −i
(

0 σµ

σ̄µ 0

)
,

where σµ = (I2, σ
i) and σ̄µ = (I2,−σi). This is indeed a representation as, using the identities

{σi, σj} = 2δij I2 , (σi)2 = 1, (13)
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we see that

(γ0)2 = −I4 (γi)2 =

(
(σi)2 0

0 (σi)2

)
= I4

{γ0, γi} =

(
−σi 0

0 σi

)
+

(
σi 0
0 −σi

)
= 0

{γi, γj} =

(
{σi, σj} 0

0 {σi, σj}

)
= 2δij I4

You have already met the Dirac representation

γ̃0 = −i
(

I2 0
0 −I2

)
, γ̃i = −i

(
0 σi

−σi 0

)
.

It is an elementary fact about Clifford algebras that there is only one irreducible representation, and therefore as the
above representations have the same dimension they must be equivalent. Let us show this explicitly, i.e. find a matrix
U , which we may take to be unitary, such that γ′µ = UγµU†. Let U be given by

U =

(
A B
C D

)
, A, B, C, D ∈ Mat2×2 C.

Unitarity implies
AA† +BB† = I2 , CC

† +DD† = I2 , AC
† +BD† = I2 (14)

Now, as γ′0U = Uγ0, we then have A = B and C = −D, which implies

2AA† = I2 , 2CC† = I2 , 2BB† = I2 , 2DD† = I2

If we rescale, setting,

A =
1√
2
A′, C =

1√
2
C ′

one finds A′ and C ′ and are unitary, and we can write U (dropping primes for ease of notation) as

U =
1√
2

(
A A
C −C

)
Finally, γ′iU = Uγi implies that Aσi = −σiC and −σiA = Cσi. One solution is given by A = I2, C = −I2. Hence U is

U =
1√
2

(
1 1
−1 1

)

Exercise 5

Begin with the Dirac equation
(γµ∂µ +m)ψ = 0

and take the adjoint
0 = ∂µψ

†(γµ)† +mψ†.

Now, multiply on the right by γ0,
0 = −∂µψ̄

[
γ0(γµ)†γ0

]
+mψ̄

Since the Pauli matrices are Hermitian, we find that in the Weyl representation

(γ0)† = −γ0 , (γi)† = γi.

Furthermore, these relations hold in any representation unitarily equivalent to the Weyl representation. Then as
γ0γi = −γiγ0 and (γ0)2 = −I4 we have γ0(γµ)†γ0 = γµ, and we find that the Dirac conjugate ψ̄ satisfies

∂µψ̄γ
µ −mψ̄ = 0.

This may be obtained from the Dirac Lagrangian

L = iψ̄ (γµ∂µ +m)ψ

as the field equation for ψ

0 = ∂µ

(
∂L
∂ ∂µψ

)
− ∂L
∂ψ

= ∂µ
(
ψ̄γµ

)
−mψ̄.
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Recall that the Lagrangian above is real, and therefore the phase change

ψ 7−→ eiαψ , α ∈ R

is a symmetry. In particular, as in Exercise 3 of Example Sheet 1,

∆ψ = iψ , ∆ψ̄ = −iψ̄ , ∆L = 0

and so the associated Noether current is

jµ =
∂L
∂ ∂µψ

∆ψ + ∆ψ̄
∂L
∂ ∂µψ̄

= ψ̄γµψ

Finally, consider jµ = ψ̄γµγ5ψ. Recalling that γµγ5 = −γ5γµ, we have also jµ = −ψ̄γ5γµψ, and so its four-divergence
is

∂µj
µ = (∂µψ̄γ

µ)γ5ψ − ψ̄γ5(γµ∂µψ)

= 2mψ̄γ5ψ,

where we make use of the equations of motion. We see then that jµ is conserved when m = 0.

Exercise 6

Recall that (γ5)2 = 1 and that, in consequence, the eigenvalues of γ5 are ±1. We call a Dirac spinor ψ left-handed if
γ5ψ = +ψ and right-handed if γ5ψ = −ψ. The following operators project onto the ±1 eigenspaces of γ5,

P± :=
1

2

(
1± γ5

)
.

We call ψR = P−ψ the right-handed part of ψ and ψL = P+ψ the left-handed part. Note this is a projection operator
as P 2

± = P± and P+P− = 0. Given a Dirac spinor ψ we have the obvious decomposition into left- and right-handed
parts:

ψ = ψL + ψR = P+ψ + P−ψ. (15)

Moreover, such a decomposition is clearly unique for if there exists another decomposition ψ = P+ψ
′ + P−ψ

′ then

P−ψ = ψR = ψ′R, (16)

P+ψ = ψL = ψ′L. (17)

Now γµ maps left- and right-handed spinors into each other as γµP± = P∓γ
µ, since γ5 anti-commutes with γµ. Hence

γµψL = γµP+ψ = P−(γµψ) = ψ′R, (18)

γµψR = γµP−ψ = P+(γµψ) = ψ′L. (19)

If we suppose that ψ satisfies the Dirac equation

(γµ∂µ +m)ψ = 0,

we can project onto the right-handed parts by acting on the left by P−,

0 = ∂µ (P−γ
µψ) +mP−ψ.

Owing to the identity {γ5, γµ} = 0 discussed above, we have P+γ
µ = γµP−, and so we obtain the following relation

amongst the left- and right-handed parts of ψ

0 = γµ∂µψL +mψR.

An identical calculation produces
0 = γµ∂µψR +mψL.

If m 6= 0, it is therefore not possible for a non-trivial solution to the Dirac equation to have vanishing left- or right-
handed parts, else, if, say, ψL = 0, then

0 = γµ∂µψL +mψR = mψR,

i.e. ψR = 0, and so ψ = ψL + ψR = 0.
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Suppose now that m = 0. To find solutions ψ = ψL+ψR to the massless field equations, known as the Weyl equations,

γµ∂µψL = 0 , γµ∂µψR = 0, (20)

it is necessary to choose a representation for which γ5 is diagonal,

γ5 =

(
1 0
0 −1

)
.

Such a choice is the Weyl representation studied in Exercise 1. Indeed, we may have performed the above analysis by
specializing to this representation, for which

P+ =

(
1 0
0 0

)
, P− =

(
0 0
0 1

)
and the decomposition ψ = ψL + ψR may be identified with

ψ =

(
ψL
ψR

)
.

Although such an approach is perfectly valid, its validity is somewhat limited in that it depends on the choice of
representation (and at the level of sophistication involved in this course, we don’t really know much about the rep-
resentations of Clifford algebras) and it is also particular to only 4 space-time dimensions. The ideas above readily
generalize to any number n+1 = d space-time dimensions, where S is replaced by a complex vector space of dimension
bd2c forming an irreducible representation of the Clifford algebra in n+ 1 space-time dimensions, and for which there is
an analogue of γ5. This is the case precisely when d is even; when d is odd no such γ5 exists and, consequently, there
is no notion of left- or right-handedness of spinors.

Now, to return to the computation at hand, a left-handed spinor is of the form

ψ =

(
χ
0

)
.

Such solutions to equations (20) thus satisfy
iσ̄µ∂µχ = 0.

Considering only plane wave solutions,

χ = eip·x
(
α
β

)
, α, β ∈ C,

we find

0 = (p · σ̄)χ =

(
p0 − p3 p1 + ip2
p1 − ip2 p0 + p3

)(
α
β

)
=

(
−p0 − p3 p1 + ip2

p1 − ip2 −p0 + p3

)(
α
β

)
.

This possesses a solution iff the matrix

p · σ =

(
−p0 − p3 p1 + ip2

p1 − ip2 −p0 + p3

)
has a non-trivial kernel, i.e. iff

0 = det

(
−p0 − p3 p1 + ip2

p1 − ip2 −p0 + p3

)
= (p0)2 − |p|2, (21)

so that the wave is massless. This is to be expected since the massless Dirac equation implies the massless Klein-Gordon
equation,

∂2χ = 0 ⇒ p2 = 0.

so that (21) is satisified.

What, then, are the solutions to

0 =

(
−p0 − p3 p1 + ip2

p1 − ip2 −p0 + p3

)(
α
β

)
(22)

Using the identity of the following exercise, we know that

(p · σ̄)(p · σ) = p · p = 0,

9



so that two solutions to (22) are readily obtained,

(p · σ)

(
1
0

)
=

(
−p0 + p3

p1 + ip2

)
and (p · σ)

(
0
1

)
=

(
p1 − ip2
−p0 − p3

)
.

Are these the only solutions and are they independent? The answer to the latter question is no, since if pµ 6=
(p0, 0, 0,±p0), then (

−p0 + p3

p1 + ip2

)
=

p1 + ip2

−p0 − p3

(
p1 − ip2
p0 − p3

)
,

this following from the condition p · p = 0. The momenta pµ = (p0, 0, 0,±p0) are excluded as one of these solutions
vanishes in this case.

Now, that these are, up to proportionality, the only solutions follows from a rather simple observation: if there were
two independent solutions then we’d have

dim ker(p · σ̄) = 2,

which, since dim SL = 2, would imply that (p · σ̄) were identically zero. However, this occurs if and only if pµ = 0,
giving constant χ. Excluding such trivialities, we see then that, for any given 4-momentum pµ 6= 0, the space of
solutions is precisely 1 dimensional.

If, instead, only the 3-momentum p is specified, there are two independent solutions, corresponding to plane waves
with pµ = (±|p|,p), i.e. positive and negative frequency waves.

Exercise 7

Recall the definitions
(i6p+m)ur(p) = 0 , (−i 6p+m)vr(p) = 0 (23)

together with the orthogonality relations

ūr(p)us(p) = −2imδrs , v̄r(p)vs(p) = 2imδrs , ūr(p)vs(p) = v̄r(p)us(p) = 0 (24)

for any r, s and p. The latter tell us that the set
{
u± 1

2
(p), v± 1

2
(p)
}

is a basis of the four dimensional vector space of Dirac

spinors for every fixed value of p. The linear operators

A(p) :=
∑
s=± 1

2

us(p)ūs(p) , B(p) :=
∑
s=± 1

2

vs(p)v̄s(p)

are therefore determined entirely by their action on the basis spinors ur(p) and vr(p). We have then

A(p)ur(p) =
∑
s

us(p) [ūs(p)ur(p)]

= −2im
∑
s

us(p)δrs

= −2imur(p)

= (−6p− im)ur(p)

where we use the first orthogonality relation in (24) and, in the final step, the first equation in (23) to evaluate

−2imur(p) = −imur(p)− imur(p) = −6p ur(p)− imur(p).

Similarly,

A(p)vr(p) =
∑
s

us(p) [ūs(p)vr(p)]

= 0

= (−6p− im) vr(p)

It follows then that
A(p) = −6p− im.

Similarly, evaluate B(p) on the spinors ur(p) and vr(p),

B(p)ur(p) = 0

= (−6p+ im)ur(p)

B(p)vr(p) = 2im vr(p)

= (−6p+ im) vr(p)

10



Exercise 8

Using the expansions given on the problem sheet and dropping vanishing anti-commutators we get

{ψ(~x), ψ†(~y)} =

2∑
s,r=1

∫
d3pd3q

(2π)62
√
E~pE~q

[
us(~p)u

†
r(~q)e

i(~p~x−~q~y){as~p, a
r†
~q }+ vs(~p)v

†
r(~q)e

−i(~p~x−~q~y){bs†~p , b
r
~q}
]

(25)

=

∫
d3p

(2π)32E~p

[
( 6p+ im)γ0ei~p(~x−~y) + ( 6p− im)γ0e−i~p(~x−~y)

]
p0=E~p

, (26)

We got to the second line by first using the anti-commutation relations and then the results from Exercise 7 for the spin
sums: ∑

s

us(~p)u
†
s(~p) = −

∑
s

us(~p)ūs(~p)γ
0 = (6p+ im)γ0 , (27)∑

s

vs(~p)v
†
s(~p) = −

∑
s

vs(~p)v̄s(~p)γ
0 = (6p− im)γ0. (28)

To simplify Eq. (26) we substitute ~p→ −~p in the second term in the square brackets and write out 6p = p0γ
0 + piγ

i:

{ψ(~x), ψ†(~y)} =

∫
d3p

(2π)32E~p

[
(p0γ

0 + piγ
i +m+ p0γ

0 − piγi −m)γ0ei~p(~x−~y)
]
p0=E~p

(29)

=

∫
d3p

(2π)32E~p
− 2p0e

i~p(~x−~y)14×4 = δ(3)(~x− ~y)14×4 . (30)

Similarly one can show {ψ(~x), ψ(~y)} = 0 = {ψ†(~x), ψ†(~y)}. Note that ψ’s are Dirac spinors with 4 components ψα, α =
1, 2, 3, 4 and therefore we computed a 4× 4 matrix. We can write out the spinor indices as

{ψα(~x), ψ†β(~y)} = δαβδ
(3)(~x− ~y). (31)

Exercise 9

We want to express the Hamiltonian, given by:

H = i

∫
d3x ψ̄

(
γi∂i +m

)
ψ , (32)

in terms the the creation and annihilation operators for the Dirac fields. First begin by using the equation of motion

(γa∂a +m)ψ = 0 , (33)

to rewrite (
γi∂i +m

)
ψ = −γ0∂0ψ , (34)

and hence

H = −i
∫
d3x ψ̄γ0∂0ψ . (35)

We now need to plug in the expansions (6) from the problem sheet, and compute. First of all,

− γ0∂0ψ =

∫
d3q

(2π)3
1√
2E~q

(
−iγ0q0

) 2∑
r=1

[
ar~qur(~q)e

i~q·~x − br†~q vr(~q)e
−i~q·~x

]
(36)

and so

H = −
∫
d3x

∫
d3q

(2π)3
1√
2E~q

2∑
r=1

q0ψ
†
(
ar~qur(~q)e

i~q·~x − br†~q vr(~q)e
−i~q·~x

)
, (37)

Now, we have no choice but to plug in the expression for ψ̄ in terms of bs, as† and expand

H = −
∫
d3x

∫ ∫
d3p d3q

(2π)
6

q0

2
√
E~pE~q

∑
s,r

[
as†~p a

r
~qu
†
s(~p)ur(~q)e

−i(~p−~q)·~x + bs~p a
r
~qv
†
s(~p)ur(~q)e

i(~p+~q)·~x

−as†~p b
r†
~q u
†
s(~p)vr(~q)e

−i(~p+~q)·~x − bs~p b
r†
~q v
†
s(~p)vr(~q)e

i(~p−~q)·~x
]
.
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The spatial integral gives δ-functions in momentum space

H = −
∫ ∫

d3p d3q

(2π)
3

q0

2
√
E~pE~q

∑
s,r

[
as†~p a

r
~qu
†
s(~p)ur(~q)δ

(3) (~p− ~q) + bs~p a
r
~qv
†
s(~p)ur(~q)δ

(3) (~p+ ~q)

−as†~p b
r†
~q u
†
s(~p)vr(~q)δ

(3) (~p+ ~q)− bs~p b
r†
~q v
†
s(~p)vr(~q)δ

(3) (~p− ~q)
]

= −
∫

d3p

(2π)
3

p0
2E~p

∑
s,r

[
as†~p a

r
~pu
†
s(~p)ur(~p) + bs~p a

r
−~pv

†
s(~p)ur(−~p)

−as†~p b
r†
−~pu

†
s(~p)vr(−~p)− bs~p b

r†
~p v
†
s(~p)vr(~p)

]
=

∫
d3p

(2π)
3

∑
s,r

[
as†~p a

r
~pu
†
s(~p)ur(~p) + bs~p a

r
−~pv

†
s(~p)ur(−~p)

−as†~p b
r†
−~pu

†
s(~p)vr(−~p)− bs~p b

r†
~p v
†
s(~p)vr(~p)

]
,

where in the last line we used the fact that p0 = −Ep. The dot products u†s · vr etc can be calculated from the explicit form
of the wave functions given in lectures. This gives

u†s(~p) · ur(~q) = 2
√
p0q0δrs , v†s(~p) · vr(~q) = 2

√
p0q0δrs , u†s(~p)vr(~q) = v†s(~p)ur(~q) = 0 . (38)

Using these identities one finds

H =

∫
d3p

(2π)
3E~p

∑
s

[
as†~p a

s
~p − bs~p b

s†
~p

]
=
∑
s

∫
d3p

(2π)3
E~p

[
as†~p a

s
~p + bs†~p b

s
~p − (2π)3δ(3)(0)

]
.

(39)

Upon normal ordering, we obtain

: H :=
∑
s

∫
d3p

(2π)3
E~p

[
as†~p a

s
~p + bs†~p b

s
~p

]
. (40)

Exercise 10

We will quantise a spin 1/2 Dirac field with boson commutation relations, which is wrong because you need anti-commutation
relations for fermions. The discussion here closely follows chapter 5.1 in Tong’s notes.
First we expand ψ(~x) and ψ†(~x) with creation and annihilation operators as in Eq. (6) on the problem sheet. Then we
impose boson commutation relations

[ar~p, a
s†
~q ] = (2π)3δrsδ(3)(~p− ~q), [br~p, b

s†
~q ] = −(2π)3δrsδ(3)(~p− ~q) (41)

with all other commutators vanishing. Now we can repeat exercise 8 with commutation instead of anti-commutation relations.
Using the expansions of ψ and ψ† in (6) on the problem sheet and only writing out non-vanishing commutators we find

[ψ(~x), ψ†(~y)] =

2∑
s,r=1

∫
d3p d3q

(2π)6
1

2
√
E~pE~q

[
us(~p)u

†
r(~q)e

i(~p~x−~q~y)[as~p, a
r†
~q ] + vs(~p)v

†
r(~q)e

−i(~p~x−~q~y)[bs†~p , b
r
~q]
]

(42)

=

∫
d3p

(2π)32E~p

[
( 6p+ im)γ0ei~p(~x−~y) + ( 6p− im)γ0e−i~p(~x−~y)

]
p0=E~p

. (43)

This is the same result as in Eqs. (27)-(28) in exercise 8. We showed in exercise 8 that the last expression can be simplified
to give δ(3)(~x− ~y)14×4. Therefore

[ψα(~x), ψ†β(~y)] = δαβδ
(3)(~x− ~y), (44)

where α, β ∈ {1, 2, 3, 4} are spinor indices. We also find [ψα(~x), ψβ(~y)] = 0 = [ψ†α(~x), ψ†β(~y)].
Let us compute the Dirac Hamiltonian

H = i

∫
d3xψ̄(γi∂i +m)ψ. (45)

As in exercise 9, our strategy will be to use the expansion of ψ,ψ† in terms of creation and annihilation operators from Eq.
(6) on the problem sheet and then simplify the result. Since we expect a simplification similar to what happened in exercise
9 to happen again, we start by looking at:

(γi∂i +m)ψ =

2∑
s=1

∫
d3p

(2π)3
√

2E~p

[
(γi(ipi) +m)us(~p)a

s
~pe
i~p·~x + (γi(−ipi) +m)vs(~p)v

s†
~p e
−i~p·~x

]
(46)
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We simplify this using

(i6p+m)us(~p) = 0 ⇒ ipjγ
jus(~p) = (ip0γ

0 −m)us(~p) (47)

(−i6p+m)vs(~p) = 0 ⇒ −ipjγjvs(~p) = (−ip0γ0 −m)vs(~p) (48)

so once again the masses cancel out and we are left with a term proportional to p0γ
0us(~p) and one proportional to −p0γ0vs(~p)

in Eq. (46). Noting that p0 = −E~p (since p0 = E~p) and proceeding to the change of variables ~p→ −~p in the vs term, we get

(γi∂i +m)ψ =

2∑
s=1

∫
d3p

(2π)3

√
E~p
2

(−iγ0)
[
us(~p)a

s
~p − vs(−~p)b

s†
−~p

]
ei~p·~x. (49)

Therefore the full Hamiltonian becomes

H = i

∫
d3x(ψ†γ0)(γi∂i +m)ψ (50)

= i

2∑
s,r=1

∫
d3x

∫
d3pd3q

(2π)6

√
E~p
2

i√
2E~q

[
ar†~q u

†
r(~q) + br−~qv

†
r(−~q)

] [
as~pus(~p)− b

s†
−~pvs(−~p)

]
ei~x·(~p−~q) (51)

= i

2∑
s=1

∫
d3p

(2π)3
−i
2

2E~p

(
as†~p a

s
~p − bs~pb

s†
~p

)
(52)

=

2∑
s=1

∫
d3p

(2π)3
E~p

(
as†~p a

s
~p − b

s†
~p b

s
~p + (2π)3δ(3)(0)

)
. (53)

We remove the Dirac delta function in the last line by normal ordering. The −bs†~p bs~p term means that we can reduce the
energy by creating b particles, i.e. the energy is unbounded below. Because of the wrong commutation relations we are
using, even if we were to redefine bs~p → bs†~p , bs†~p → bs~p, and then re-do the normal-ordering procedure, the problematic term

would be negative, which means there is no redefinition we can do to make it bounded from bellow. (Note that if we had
been using anti-commutation relations and had gotten this result, this redefinition would have done the trick, so this is truly
a consequence of the wrong commutation relations that we were using.)

Exercise 11

We want to compute the Feynman propagator of the Dirac field, which is defined as

SF (x− y) ≡ 〈0|Tψ(x)ψ̄(y)|0〉 ≡

{
〈0|ψ(x)ψ̄(y)|0〉 for x0 > y0,

−〈0|ψ̄(y)ψ(x)|0〉 for x0 < y0.
(54)

In the case x0 > y0 we have

〈0|ψ(x)ψ̄(y)|0〉 =

2∑
s,r=1

∫
d3p d3q

(2π)6
1

2
√
E~pE~q

〈0|
(
as~pus(~p)e

ipx + bs†~p vs(~p)e
−ipx

)(
ar†~q ūr(~q)e

−iqy + br~q v̄r(~q)e
iqy
)
|0〉 (55)

=

2∑
s,r=1

∫
d3p d3q

(2π)6
1

2
√
E~pE~q

〈0|as~pa
r†
~q us(~p)ūr(~q)e

i(px−qy)|0〉. (56)

Now, performing the anti-commutation as~pa
r†
~q = −ar†~q as~p + (2π)3δrsδ

(3)(~p− ~q) and performing the resulting delta function, we
have, using the first spin sum identity proven in exercise 7,

〈0|ψ(x)ψ̄(y)|0〉 =

2∑
s=1

∫
d3p

(2π)3
1

2E~p
us(~p)ūs(~p)e

ip(x−y) =

∫
d3p

(2π)3
1

2E~p
(−6p− im)eip(x−y). (57)

Writing out the spinor indices α, β this gives (in the case x0 > y0)

SF (x− y)αβ =

∫
d3p

(2π)3
1

2E~p
(−pa(γa)αβ − imδαβ)eip(x−y). (58)

The case x0 < y0 works similarly,

SF (x− y)αβ = −〈0|ψ̄(y)βψ(x)α|0〉 (59)

= −
2∑

s,r=1

∫
d3pd3q

(2π)6
1

2
√
E~pE~q

〈0|
(
as†~p ūs(~p)βe

−ipy + bs~pv̄s(~p)βe
ipy
)(

ar~qur(~q)αe
iqx + br†~q vr(~q)αe

−iqx
)
|0〉(60)

= −
2∑

s,r=1

∫
d3pd3q

(2π)6
1

2
√
E~pE~q

〈0|bs~pb
r†
~q v̄s(~p)βvr(~q)αe

i(py−qx)|0〉. (61)
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Now, anti-commuting and using the second spin sum proven in exercise 7,

(SF (x− y))αβ = −
∫

d3p

(2π)3
1

2E~p

(
2∑
s=1

vs(~p)v̄s(~p)

)
αβ

e−ip(x−y) = −
∫

d3p

(2π)32E~p
(−6p+ im)αβ e

−ip(x−y). (62)

Finally we write both cases x0 > y0 and x0 < y0 in one formula as

(SF (x− y))αβ =

∫
d3p

(2π)3
1

2E~p

[
θ(x0 − y0) (−6p− im)αβ e

ip(x−y) − θ(y0 − x0) (−6p+ im)αβ e
−ip(x−y)

]
. (63)

Having obtained this expression for the Feynman propagator, we can use complex analysis techniques to see how it can be
recovered from a 4-momentum integral of the form:∫

d4p

(2π)4
(i 6p−m)

p2 +m2 − iε
eip(x−y) (64)

upon choosing a particular prescription for avoiding the two poles of the integrand occurring on the mass-shell p2 = −m2 in
momentum space, or, in p0 space, p0 = ±E~p
Unlike the computation for the retarded propagator of a scalar field, the Feynman propagator here contains two terms of
which only one is non-zero according to the time ordering of the fields. Following the same logic used in the case of the
scalar field propagator, we thus move one of the poles into the upper plane so as to be caught inside the contour for x0 < y0,
while moving the other down into the lower half plane so as to be caught inside the semi-circular contour employed in the
case x0 > y0.
This regularization is achieved by making the replacement:

1

p2 +m2
→ 1

p2 +m2 − iε
=

−1(
p0 +

√
E2
~p − iε

)(
p0 −

√
E2
~p − iε

) , (65)

which, in the limit ε→ 0 has simple poles at

p0 = ±(E~p − i
ε

2E~p
) +O(ε2) , (66)

i.e. E~p is perturbed downwards while −E~p is perturbed upwards (see figure). That this gives the right result for SF we ow
demonstrate.

The residue at each of these poles in the above limit are:

lim
ε→0

Res

(
−1

(p0)
2 − E2

~p + iε
e−ip

0(x0−y0) , p0 = ±
√
E2
~p − iε

)
= ∓ 1

2Ep
e∓iE~p(x

0−y0) (67)
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Therefore, when x0 > y0, employing Jordan’s lemma and the residue theorem as before, and remembering that there is an
additional factor of −1 form the clockwise direction of the contour, we have:

lim
ε→0

∫
d4p

(2π)4
(i6p−m)

p2 +m2 − iε
eip(x−y) = (−2πi)

∫
d3p

(2π)3
1

2π

(i6p−m)

−2E~p
e−iE~p(x

0−y0)ei~p·(~x−~y)
∣∣∣∣
p0=E~p

(68)

=

∫
d3p

(2π)3
(−6p− im)

2E~p
eip(x−y)

∣∣∣∣
p0=E~p

, (69)

which coincides with SF (x− y) for x0 > y0.
For x0 < y0 we instead close in the upper-half plane and obtain

lim
ε→0

∫
d4p

(2π)4
(i 6p−m)

p2 +m2 − iε
eip(x−y) = (2πi)

∫
d3p

(2π)3
1

2π

(i6p−m)

2E~p
eiE~p(x

0−y0)ei~p·(~x−~y)
∣∣∣∣
p0=−E~p

(70)

=

∫
d3p

(2π)3
(−6p− im)

2E~p
eiE~p(x

0−y0)ei~p·(~x−~y)
∣∣∣∣
p0=−E~p

(71)

=

∫
d3p′

(2π)3
( 6p ′ − im)

2E~p′
eiE~p′ (x

0−y0)e−i~p
′·(~x−~y)

∣∣∣∣
p′0=−E~p′

, (72)

where, in the last line, we have changed variables pi → p′i = −pi for all three spatial components. We made this change
because in the line before, neither the 6p nor the exponent were explicitly Lorentz scalars when p0 = −E~p. With this change
of variables, we obtain:

6p |p0=−E~p
=

[
−p0γ0 + piγi

]∣∣
p0=−E~p

(73)

= E~p γ
0 + piγi (74)

= −6p ′ , (75)

We finally obtain

lim
ε→0

∫
d4p

(2π)4
(i 6p−m)

p2 +m2 − iε
eip(x−y) = −

∫
d3p′

(2π)3
(−6p ′ + im)

2E~p′
e−ip

′(x−y)
∣∣∣∣
p′0=−E~p′

, (76)

and this is precisely the expression for SF (x− y) when y0 > x0.
Finally we verify that SF is a Green’s function for the Dirac operator:

(6∂x +m)SF (x− y) = (6∂x +m)

∫
d4p

(2π)4
eip(x−y)

i6p−m
p2 +m2

(77)

=

∫
d4p

(2π)4
(i 6p+m)

i6p−m
p2 +m2

eip(x−y) (78)

=

∫
d4p

(2π)4
−6p 2 −m2

p2 +m2
eip(x−y) (79)

= −δ(4)(x− y). (80)

Here we used

6p 2 = γapaγ
bpb = papb

1

2

{
γa, γb

}
= p2 . (81)

Exercise 12

In Maxwell Theory, the dynamics of a co-vector field Aµ(x) are governed by the Lagrangian

L = −1

4
FµνFστη

µσηντ = −1

4
FµνF

µν

in terms of the field-strength (or Faraday) tensor

Fµν = ∂µAν − ∂νAµ.

Under the ‘gauge’ transformation
Aµ 7−→ Aµ + ∂µξ, (82)

for ξ any smooth function, the field-strength changes according to

Fµν 7−→ ∂µ (Aν + ∂νξ)− ∂ν (Aµ + ∂µξ) = ∂µAν − ∂νAµ + ∂2µνξ − ∂2νµξ
= Fµν
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Where in the last line we employed the fact that mixed partial derivatives commute. We see then that under (82), the
field-strength, and therefore the Lagrangian, is unchanged - i.e. gauge invariant.

Now, for space-time translations xµ 7→ xµ + aµ, the field transforms by Taylor’s Theorem as

Aµ(x) 7−→ Aµ + aν∂νAµ(x) +O(a2),

ie. δAµ = aν∆νAµ, where ∆νAµ = ∂νAµ. For the field-strength,

Fµν 7−→ Fµν + aλ∂2µλAν − aλ∂2νλAµ +O(a2) = Fµν + ∂λ
(
aλFµν

)
+O(a2),

with everything evaluated at the space-time point xµ. Putting this transformation into L above, we see that the first order
change in the Lagrangian is

L 7−→ L− 1

2
∂λ
(
aλFµν

)
Fστη

µσηντ = L − 1

4
∂λ
(
aλFµνF

µν
)

or δL = ∂λ(aλL), a divergence.

By Noether’s theorem, we obtain conserved currents Tµν for each space-time direction given by the formula (Schroeder &
Peskin p. 18)

Tµν =
∂L

∂ ∂µAλ
∆νAλ − J µν , (83)

where, in this instance, J µν = δµνL. Calculate that

∂ Fστ
∂ ∂µAν

= δµσδ
ν
τ − δνσδµτ

so that

∂L
∂ ∂µAν

= −1

2

∂ Fστ
∂ ∂µAν

Fστ

= −1

2
(δµσδ

ν
τ − δνσδµτ )Fστ

= −1

2
(Fµν − F νµ)

= F νµ, (84)

by skew-symmetry of the field-strength (i.e. Fµν = −Fνµ). Altogether, the array Tµν , or Energy-Momentum Tensor, is given
by

Tµν = Fλµ∂νAλ +
1

4
δµνF

στFστ .

Let us raise the ν index,

Tµν = Fλµ∂νAλ +
1

4
ηµνFστFστ .

Manifestly, this quantity is not a symmetric tensor and cannot be gauge invariant, since under (82)

Fλµ∂νAλ 7−→ Fλµ∂νAλ + Fλµ∂ν∂λξ,

the second term of which does not, in general, vanish; very undesirable properties for an energy-momentum distribution.

Instead, let us examine the following tensor

Θµν = Tµν − Fλµ∂λAν

= Fλµ∂νAλ − Fλµ∂λAν +
1

4
ηµνFστFστ

= Fλµ (∂νAλ − ∂λAν) +
1

4
ηµνFστFστ

= FλµFσλη
σν +

1

4
ηµνFστFστ

= FλµF νλ +
1

4
ηµνFστFστ
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which manifestly is gauge invariant. Furthermore

Θνµ = FλνFµλ +
1

4
ηνµFστFστ

= −F νλFµλ +
1

4
ηµνFστFστ

= −F νλFµλ +
1

4
ηµνFστFστ

= F νλF
λµ +

1

4
ηµνFστFστ

where we interchange indices ν ↔ λ in the second line, picking up one factor of (−1), simultaneously raise/lower λ in the
third and swap indices again in the final line.

This new tensor is traceless since

Θµ
µ = FλµFµλ +

1

4
δµµF

στFστ

= −FµλFµλ + FστFστ

= 0.

Finally, we show that Θµν is also conserved. However, a Noether current is only conserved when the fields are ‘on-shell,’ i.e.
satisfy the field equations, which we must therefore calculate:

0 = ∂µ

(
∂L

∂ ∂µAν

)
− ∂L
∂Aν

= ∂µF
νµ,

where the calculation (84) from earlier was used. Now,the divergence of Θµν can either be found by long-hand (extremely
tedious) or using the a-priori fact that Tµν is conserved.

∂µΘµν = ∂µT
µν −

(
∂µF

λµ
)
∂λA

ν − Fλµ∂2µλAν ,

the first term of which vanishes by Noether’s theorem, ∂µT
µν = 0, the second vanishes by the field equations and the

remaining term Fλµ∂2µλAν vanishes since Fλµ is skew in λµ but ∂2µλAν is symmetric in λµ.

The new object Θµν therefore defines a symmetric, gauge-invariant, trace-free and conserved tensor and is thus a candidate
for a physical energy-momentum tensor. Notice also that when the fields are on-shell, the difference Tµν −Θµν is simply a
divergence, so that the two tensors describe the same physics.

Exercise 13

The Lagrangian

L = −1

4
FµνF

µν +
1

2
m2CµC

µ , where Fµν = ∂µCν − ∂νCµ,

has the same dependence on the field derivatives ∂C as the Lagrangian governing electrodynamics in the previous question,

∂L
∂ ∂µCν

= F νµ.

The field equations are therefore

0 = ∂µ

(
∂L

∂ ∂µCν

)
− ∂L
∂Cν

= ∂µF
νµ −m2Cν . (85)

Upon taking the divergence we find
0 = ∂2µνF

νµ −m2∂νC
ν .

The first term vanishes due to symmetry of second partials and skew symmetry of the field-strength, leaving

m2∂νC
ν = 0.

If m is non-zero, we see that the fields satisfy
∂µC

µ = 0.
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To obtain the field equation for C0, set ν = 0 in (85),

0 = ∂µF
0µ −m2C0

∂µF
0µ = ∂iF

0i

= ∂i
(
∂0Ci − ∂iC0

)
= −∂iĊi − ∂i∂iC0

⇒ 0 = −∂iĊi − ∂i∂iC0 −m2C0

⇒ ∂i∂
iC0 +m2C0 = ∂iĊ

i,

where we variously use the fact that (in the conventions of this course) the Minkowski metric is diag(−1, 1, 1, 1), so that
∂0 = −∂0 and C0 = −C0. The field component C0 therefore satisfies the inhomogeneous Helmholtz equation(

∇2 +m2
)
C0 = ∂iĊ

i,

which, subject to sufficiently nice asympototic behaviour, possesses a unique solution for C0. For instance, the Green’s
function for the operator ∇2 +m2,

G(x) =
eim|x|

4π|x|
,

provides the following solution

C0(t,x) =

∫
R3

d3y
∂iĊ

i(t,y)

4π|y − x|
eim|y−x|.

Recall that the momenta Πµ conjugate to the Cµ are defined by

Πµ =
∂L
∂ Ċµ

.

Again using (84), this gives the following expressions

Πµ = −F 0µ =

{
0 , µ = 0
−∂0Ci + ∂iC0 , µ = i

The velocities of the dynamically relevant variables Ci are thus given by

Ċi = Πi − ∂iC0.

Having found this inverse relation between the momenta and the dynamical velocities, the Hamiltonian density can now be
computed

H = ΠµĊ
µ − L

= Πi

(
Πi − ∂iC0

)
+

1

2
F 0iF0i +

1

4
F ijFij −

1

2
m2CµC

µ

The term quadratic in F ij contains no time derivatives and so may be left intact, however, the second term must be
re-expressed as a function of the Πµ,

F 0iF0i =
(
∂0Ci − ∂iC0

)
(∂0Ci − ∂iC0)

=
(
−Ċi − ∂iC0

)(
Ċi − ∂iC0

)
= −ΠiΠi

The complete expression for the Hamiltonian density is therefore

H[Πµ, Cµ] =
1

2
ΠiΠ

i +
1

4
F ijFij −

1

2
m2CµCµ + C0

(
∂iΠ

i
)
− ∂i

(
Πi C0

)
Where the troubling additional term −Πi ∂

iC0 has been written as

C0
(
∂iΠ

i
)
− ∂i

(
Πi C0

)
,

which involves an irrelevant 3-divergence term. Since the remainder of the Hamiltonian contains no derivatives in C0, C0

may be regarded as a multiplier, that, in the m = 0 theory, imposes the constraint ∇ ·Π = m2C0 = 0, which is precisely
Gauss’ Law.
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