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Exercise 1

We will use the convetion that the Lorentz generators are

s =1, g

Note this implies that the finite transformations would be

1 v
DIAT 5 = oxp | 30 (50" 5 @)
The object is to show that the S defined below generate a representation of the Lie algebra so0(3, 1), the Lie algebra of the
Lorentz group SO(3,1).
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Now, to perform the main computation of interest, write S** = i[fy“, ~¥] in a slightly more convenient form,
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This allows us to calculate that
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The S*” thus define a representation of s0(3,1), called the spin representation - it is not irreducible (see next exercise).

Exercse 2

We use the brackets (3) worked out in the previous exercise, but first write

7

<€y = 2k (YAF - 00)
4 4
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where skew symmetry of ¢;;;, allows us to insert the symmetric term 0% . Thus

Si,8;] = —%eiklejmn[skl,sm”]
= —ieikzejmn (o' g — ghmgin 4 glngmk — gkngmt)
= —i (€iri€jinS™" — €in€irnS"™ + €in€jmiS™ — €ini€jmpS™) .
Relabeling indices in the final three terms and permuting in the alternating symbols, we have
[Si,S;] = —i (€ini€jinS™ — €n€in S™ + €ini€jnS™ — €in€jn1S™)
= —€imejinS™"

€iki€jn1S™"

= (6ij0kn — Oindr;) S*"
—S;i

Sij,

where in the final two steps the obvious skew-symmetry S*” = —S™* was employed, so that, in the penultimate step,
Skng. = 0. To obtain the desired result, consider

, 1 o o .
ieijrST = *géijkﬁkmsl = §€ijk€nlksl =3 (8imj1 — 0it0jm) S
1
= 5 (55 = Sji)
= S

ij
Thus
[S,‘, S]] = iﬁijk-Sk,

and we see that the S® furnish a representation of the Lie algebra of the rotation group in three dimensions, s0(3) = su(2).

Since 709" = —vi49,
V8" = eyt =+

Zeijk’yj'}/k’)’o _ Sz,yo
ie. 42,8 =0.
Using the claim below, the same reasoning demonstrates that [y, S%] = 0.

Claim:

(V") =0 (4)
This is straightforward to prove: since y* anti-commutes with v whenever p # v, we can commute y* past the three v” in
4% for which u # v and pick up a factor of (—1)3 = —1.

Mathematical Remark: In fact, the previous argument demonstrates that [v°, $**] = 0, which in turn tells us that
the representation of s0(3,1) furnished by the S*” is reducible: since (v*)? = 1 (see Exercise 10) it follows that
the space of Dirac spinors (i.e. C*) splits into eigensubspaces of 4° with eigenvalues #1; the identity [y®, $**] = 0
shows that the action of the S*” preserves this eigenspace decomposition, i.e. sends all Dirac spinors of ~°
eigenvalue +1 into a spinor with the same eigenvalue. These eigenspaces are thus proper invariant subspaces, and
so the representation is reducible.

More generally, this is a feature of even dimensions - in odd dimensions the representation defined here is indeed
irreducible. See Michelson & Lawson, Spin Geometry for full details.

Fixing ¢ € {1, 2, 3}, there are j, k € {1,2,3} uniquely defined by j,k # ¢ and j < k. Then, without any implicit summations,

S; = ik (WJ’Yk - Vk’Y]) .
Then as €;;; = %1, (eijk)Z = +1, so

(5%)? = T (VA A AT+ ATy T — 43 (fF) 2T — AR (47)24F)



Now, in the first two terms use that 47* = —v*+J whenever j # k, so that, as (7/)? = —1,

, 1 . . . , , 1 1
S =—— (=(")?(")? = (")) =7 (V) = (V)P) = - (4D = S 1
16 16 4
Consider the following 4-dimensional representation of the Clifford algebra
o_(I2 0 i 0 o
’7 - O _12 ’7 - _O.z 0 9
where, for reference,
(o) = 0 1 0 —i 1 0
77 W1t o0 ) Ui 0 )00 -1
and these satisfy o - -
olo? =691y + ik oy, (5)
so that, in particular, o N o N
{o',07} =261, , [0%,07] = 2ieT¥qy,. (6)

The S? having the following matrix representatives

S; = KEijk’YJV = ik ( 0 Cgigh |-

According to (5),

j k . l . l )
€ijkO'JO' = 1€5k€5kI0 = Z((Su(gjj - 5”'5]'1)0' = 20",

So that ) _
it O"L 0
5= 2 < 0 o ) ’
Then by (6),
) ) o 1 [Ui,Uj] 0 . 1 2i€ijk0k 0 o 1 0‘1c 0 o k
[S“Sj] n Z < 0 [O'i,O'j] ) o Z ( 0 2i6¢jk0k = gk 5 0 Uk _Zeljks ’
as desired.

From (6), (¢%)% = +1, so

o = (% B )

. AN 0 0 1 0 o? 0 o
5 0.1.2.3 __ 2
=YY - Z( 0 _12 ) ( _01 ) ( _02 0 ) ( _03 0 )

Likewise, [°, 5] = 0.

Since s0(3) (the Lie algebra of the rotation group, SO(3)) is a sub-algebra of the Lorentz algebra, these calculations tell us
that by restricting the above representation of so(1, 3) to a representation of s0(3), we obtain two copies of the usual spin half
representation encountered in non-relativistic physics. In other words, Dirac spinors furnish the (reducible) representation
of 3 @ 3 of 50(3) and thus have spin 1.

Notice that although we have exhibited the representation of s0(3) < s0(1,3) as a sum of irreducibles, i.e. the matrices S°
generating s0(3) are block diagonal, this does not show is explicitly that the representation of so(1,3) constructed here is
reducible (as claimed above) since the S are in fact not block diagonal in this representation (additional exercise: show



this).

A representation where 7% is block diagonal ensures all S#¥ are block diagonal as well. The so called chiral representation

with )
0 __ 0 IQ i 0 o’
Y= ( 12 0 V= 701' 0 (7)

achieves this (additional exercise: show this).

Exercise 3

As the identity (7°)2 = I is used in numerous places throughout the following calculations, it is more logical to prove this
first. Picking up various factors of —1 from commuting factors, we have

(V") = 707172737071727

— ( ) ( )2 717273

_ +( 1) ( )2( )2 2737273

=~ ()%
and, finally, using (%)% = +1, (7%)? = —1I, we see that (v°)? =L

1. We prove instead that
Tr (fylu . ,,ylt2k+1) =0 , k¢ I\I7

as this accounts for this Exercise and Exercises 3 and 8 also.
We begin by inserting a factor of (v%)2 = I into the far right of the trace and use the cyclicity of the trace to move one
of these factors of +® to the far left,

Tr (fyll«l .. 7H2k+1) = Tr (,y/il .. ,,y,u2k+1 (75)2)
= Tr (757“1 - 7#2k+1’75) .
Now use the identity (4) to begin anti-commuting this v° past each factor of v to its right.

Tr (yHr - oqtzett) = (=1)Tr (7“17572 e 'YH%H’YS)
(_1>2k+1Tr (’y’“ .. .,y,u2k+1,.y575>
= (*1)2k+1TI‘ (fy“l CeyH2kt (75)2)
= —Tr (7#1 .. .»yﬂzwl)
= Tr (,yul .. .,ylizkﬂ) = 0 (8)

where in the penultimate step, we use (7°)? = I again.

2. Splitting the product v#+" into symmetric and skew-symmetric parts, we have
oV Lw v Low v
Tr(v*y”) = Tr{5{" 2"+ 5077
1 0o 1 0o
= ST (" + 5T
The second term vanishes since the identity Tr(XY) = Tr(Y X) implies
0=Tr(XY) - Tr(YX) = Tr (XY - VX)) = Tr[X,Y].
Using the defining relation of the Clifford algebra, this then gives

Tr(v"9") = Tr(g"14)
49" 9)

5. Here, insert a factor of (v°)? = I and anti-commute as before

Tey” = Tr(°(7%)?%)
_ —Tr('yofy5'yo)
~Tr (v°(7°)?)

=Try> = 0 (10)



10.

11.

. As was done previously, split the product y#+4” into symmetric and skew-symmetric parts and then use the Clifford

relations,

v = %puqu (" + A

1
= ipp(b (29/“/1 + 45#1’)

= p-ql+25"p,q,.
This time simply anti-commute factors,
v = puay”
pudy (¥, 77} = "7")
Pudv (29" 1 —+"+")
= 2p-q—qf

Clearly, by (9),
Tr(pg) = pua Tr (4*7") = 4pugug™” = 4p - q

. Clearly

T (50 =gl T,
which vanishes by (8).

. As before, we use cyclicity of the trace and then perform a sequence of anti-commutations to move a factor back to its

original position,
Tr (Y#979777) = Tr (v79"7"9*) = Tr ({77,479 — 79" ~")
2g7HTr (v"y") — Tr (Y {77, 7"} 7*) + Tr (v#4"77~")
2g7MTr (v/47) — 2977 Tr (v#4°) + Tr (v {77,7"}) — Tr (v#4"+"77)
= Tr (Y#9"477) = g7 Tr (v"") — g7 " Tr (v#'~*) + g7 Tr (4*+")
= 4979 — 979" + 97" g")

Contracting this identity with p1, p2, p3, psa gives the desired result.
First,
Tr (7o 9"y") = =Tr (Y*7°") = =Tr (v°7"+*)

so that Tr (757”7") is skew in pv. To calculate this trace we need therefore only look at the cases ¢ =4, v = 0 and
pw=1i,v=7j,i%#j. First, for p =i, v =0,
Tr (v°7%) = T ((v)29v'*%)
— Ty (71727371)

As ~' appears somewhere in the product y'v2~3, it may be commuted through the relevant factors until we obtain a
square (7*)2 = —I. Thus, up to sign, we have, for j < k and j, k # i,

Tr (v°7'°) = £iTr (/%) = £4is’™* = 0
where the result (9) has been used.
When p =1, v = j, i # j, we similarly have, for k # 1, j,

Tr (’y‘r”yi’yj) = £4Tr (’yofyk) = +2ig"% =0,
again by (9).

Again, perform anti-commutations and use the Clifford relations,

Y = Gouve = AN} Goube — VAV Gupbo
v O 1 (o
= 2'7 g #gu,upa lom < {7 ’)/H}“i’ [7 Y }> Y Po
217/_ guugyuﬂ
= -2 (11)

where in the third line
guuly", 7] =0,
since g,,, is symmetric v p yet [y, "] is skew.



12. Using (11) in the second line,

Vb = v v — vy e

291Dy + 2010

2911 + 2012

2{p2, 1}

= 4dp-q (12)

13. Using (12),

VP = el VY — ey s
= 2939192 — 4p1 - p2 3
= 2p5{ph, Po} — 2030201 — 4p1 P25
= —2pspap.

14. We show first that

SHPT = Tr (voy#y"yPy7) = Tr (757[“7”7”7”]> ,
so that, as a totally skew contravariant 4-tensor in 4 dimensions, S#*?? must be proportional to the alternating tensor

Moo
We can show this for adjacent pairs of indices since, for instance,
S5 MUV AP AT 5 1 T2 1 woA v P A, ST
Tr (v°2"9"7"7) = Tr 7”507 + 5071 ) vy
174 g 1 v ag
= ¢"Tr (v°9"7) + 5T ([ h)

the first term of which vanishes by the identity (10), leaving the term skew in pv. This then implies that S#*P7 is

totally skew since, for instance,
SGPYHO — _ QUPHO +SVHPU — _GHrpo

Recall that the alternating tensor e*”*? is defined by

ehvPo — eaﬁ’yégaugﬂug'ypgéa

where €g123 = +1. Therefore
0123 _ eam(sgo‘ogﬂlgwg% = det (g) = —1.

Thus

QHVPO MOy (757071,}/2,}/3)
= §e"PTr ((75)2)
= " Tr(1y)

4ietvP?

Exercise 4

The Weyl (or chiral) representation of the Clifford algebra is defined by the matrices

0o_ . 0 12 i 0 O'i
T Z(12 o) T 77" =" 0

This may be written more concisely as
T 0 ot
7= gk 0 )

where o# = (I, 0") and 5* = (I3, —o?). This is indeed a representation as, using the identities

{0,067} =261, , (0%)* =1, (13)



we see that

You have already met the Dirac representation

o_ (L o i_ (0 o
V= 0 _12 y V= _O.i 0 .

It is an elementary fact about Clifford algebras that there is only one irreducible representation, and therefore as the
above representations have the same dimension they must be equivalent. Let us show this explicitly, i.e. find a matrix
U, which we may take to be unitary, such that 4* = Uy*UT. Let U be given by

A B
U:(C D>,A,B,C,DEM&t2X2C.

Unitarity implies
AAT+ BBt =1, , cct+ DD =1, , ACt + BD' =1, (14)

Now, as 7'°U = U~°, we then have A = B and C = —D, which implies
24AY =1, , 2cCct =1, , 2BBT =1, , 2DD' =1,

If we rescale, setting,

1 1
A=A, C=—=C'
V2 V2

one finds A’ and C’ and are unitary, and we can write U (dropping primes for ease of notation) as

TEEY

Finally, U = U~* implies that Ac? = —¢*C and —0*A = Co?. One solution is given by A = Iy, C = —I,. Hence U is
1 1 1
- (h1)

Exercise 5

Begin with the Dirac equation
(0, +m)y =0

and take the adjoint
0=0,9"(v")" +myt.

Now, multiply on the right by ~°, - -
0==0,% [¥°(4")"°] +my
Since the Pauli matrices are Hermitian, we find that in the Weyl representation
() ==, ()T =+~

Furthermore, these relations hold in any representation unitarily equivalent to the Weyl representation. Then as
04" = =149 and (y°)? = —1I4 we have 7°(y#)f7? = 4#, and we find that the Dirac conjugate 1) satisfies

Aptby* — myp = 0.
This may be obtained from the Dirac Lagrangian

L =) (7" +m)y

oL oL
0= 5’*(6%)‘&/}

= 9 (") —m.

as the field equation for v




Recall that the Lagrangian above is real, and therefore the phase change
Ve, aeR
is a symmetry. In particular, as in Exercise 3 of Example Sheet 1,
Ap=ihp, Ap=—ip, AL=0

and so the associated Noether current is

oL - 0L

n= A+ A _

J ?%w (0 wam
= Py

Finally, consider j* = 1y#4°¢. Recalling that y#7° = —v°4*, we have also j* = —1)y°y*4), and so its four-divergence
is

Ouj* = (0 Y" IV — PP ()
= 2myy°ep,

where we make use of the equations of motion. We see then that j* is conserved when m = 0.

Exercise 6

Recall that (v%)? = 1 and that, in consequence, the eigenvalues of v° are 1. We call a Dirac spinor ¢ left-handed if
~P1p = +1) and right-handed if ¥51) = —p. The following operators project onto the 41 eigenspaces of 7>,

1

Pyi= g (1£4°).
We call Y = P_1 the right-handed part of ¢ and 1 = Pyt the left-handed part. Note this is a projection operator
as P2 = Py and P, P_ = 0. Given a Dirac spinor ¢ we have the obvious decomposition into left- and right-handed
parts:
Y =9 +¢Yr=Pp+ P19 (15)
Moreover, such a decomposition is clearly unique for if there exists another decomposition ¥ = Py’ + P_1)’ then
P_tp =g = ¢, (16)
Py = =P (17)
Now ~v# maps left- and right-handed spinors into each other as v Py = P=v", since v° anti-commutes with v*. Hence
Vpr =" Prp = P_(y"¢) = P, (18)
Vbg =" P_tp = Pi(y"¥) = . (19)

If we suppose that 1) satisfies the Dirac equation
(70 +m)yp =0,
we can project onto the right-handed parts by acting on the left by P_,
0 =0, (P_~"¢) +mP_1.

Owing to the identity {7°,7#} = 0 discussed above, we have P,y* = y*P_, and so we obtain the following relation
amongst the left- and right-handed parts of ¥

0 =~"0ubr, + miR.
An identical calculation produces
0=7"0,r + myr.

If m # 0, it is therefore not possible for a non-trivial solution to the Dirac equation to have vanishing left- or right-
handed parts, else, if, say, ¥y, = 0, then
0 =7"0,¢rL + myr = myr,

i.e. Yp =0, and so ¥ =Yy +vYr =0.



Suppose now that m = 0. To find solutions ¢ = ¥ +1r to the massless field equations, known as the Weyl equations,
Youbr =0, Y*0ur =0, (20)

it is necessary to choose a representation for which 4° is diagonal,

s (10
7‘(0—1 '

Such a choice is the Weyl representation studied in Exercise 1. Indeed, we may have performed the above analysis by
specializing to this representation, for which

10 0 0
P+:(0 0) ’ P—:<0 1>

and the decomposition ¥ = v, + ¥z may be identified with

o=():

Although such an approach is perfectly valid, its validity is somewhat limited in that it depends on the choice of
representation (and at the level of sophistication involved in this course, we don’t really know much about the rep-
resentations of Clifford algebras) and it is also particular to only 4 space-time dimensions. The ideas above readily
generalize to any number n+ 1 = d space-time dimensions, where S is replaced by a complex vector space of dimension
ng forming an irreducible representation of the Clifford algebra in n 4 1 space-time dimensions, and for which there is
an analogue of v°. This is the case precisely when d is even; when d is odd no such ~° exists and, consequently, there
is no notion of left- or right-handedness of spinors.

Now, to return to the computation at hand, a left-handed spinor is of the form

Such solutions to equations (20) thus satisfy

Considering only plane wave solutions,

we find

:(p.O)X:<pop3 p1+ip2)<a>:(p°p3 pt+ip® )<a>
pL—ip2  po+p3 B pt—ip* —p°+p? B

This possesses a solution iff the matrix

has a non-trivial kernel, i.e. iff

0 3 1 ;.2
—Db =D p+p 02 2
0 = det . = — , 21
< pl—ip? 0+ p3 ) (r°) p (21)

so that the wave is massless. This is to be expected since the massless Dirac equation implies the massless Klein-Gordon
equation,
Px=0 = p>=0.

so that (21) is satisified.
What, then, are the solutions to
0_ .3 1 ;2
—p - —p° p +p «
0= . 22
<p1—1p2 —p°+p3><5) (22)
Using the identity of the following exercise, we know that

(p-o)p-o)=p-p=0,



so that two solutions to (22) are readily obtained,

(p~0)<é>:<;it§> and (p-0)<(1)>=(_p;o__n§3 )

Are these the only solutions and are they independent? The answer to the latter question is no, since if p* #

(»%,0,0,4p%), then
( —p° +p° ) _ P+ ( pt—ip? )
pl + ,L'p2 - _po _ p3 pO _ p3 )
this following from the condition p - p = 0. The momenta p* = (p°,0,0, £p") are excluded as one of these solutions
vanishes in this case.

Now, that these are, up to proportionality, the only solutions follows from a rather simple observation: if there were
two independent solutions then we’d have
dim ker(p-5) = 2,

which, since dim Sy, = 2, would imply that (p - ) were identically zero. However, this occurs if and only if p* = 0,
giving constant x. Excluding such trivialities, we see then that, for any given 4-momentum p* # 0, the space of
solutions is precisely 1 dimensional.

If, instead, only the 3-momentum p is specified, there are two independent solutions, corresponding to plane waves
with p#* = (&|p|, p), i.e. positive and negative frequency waves.

Exercise 7

Recall the definitions
(i +m)ur(p) =0, (—i/+m)v,(p) =0 (23)
together with the orthogonality relations
tr(p)us(p) = —2imdys , Ur(p)vs(p) = 2imdys , Ur(p)vs(p) = vr(p)us(p) =0 (24)

for any r, s and p. The latter tell us that the set {ui 1 (p), vy 1 (p)} is a basis of the four dimensional vector space of Dirac
spinors for every fixed value of p. The linear operators

Alp) ==Y us(p)us(p) , Bp) =Y vs(p)vs(p)

—4+ 1 —4 1
s=%3 s=*£3

are therefore determined entirely by their action on the basis spinors u,(p) and v,(p). We have then

Apur(p) = > uslp) [1s(p)ur(p)]
= —2im Zus(p)érs

= —2imu,(p)
(_p(_ im)ur(p)
where we use the first orthogonality relation in (24) and, in the final step, the first equation in (23) to evaluate
—2imur(p) = —imu,(p) — imup(p) = —Pur(p) — imu,(p).
Similarly,
Ave(p) = > us(p) [s(p)vr(p)]
0
= (_ﬂ_ lm) vr(p)
It follows then that

A(p) = —p/ —im.
Similarly, evaluate B(p) on the spinors u,(p) and v.(p),
B(p)us(p) = 0
= (_]/"_ Zm) ur(p)
B(p)vr-(p) = 2imv.(p)

(= + im) v, (p)

10



Exercise 8

Using the expansions given on the problem sheet and dropping vanishing anti-commutators we get

T T d’ d3 i(PT—qY, r PE—qY) 38T 17
@@ = Z | e e o [ P @ T e oy o @el@e TPl ] e

d’p VA0 LB (E—T) _ 0 ,—ip(Z—7F)
/ e, | N e 4 (i) . (26)

We got to the second line by first using the anti-commutation relations and then the results from Exercise 7 for the spin
sums:

S )l ()
S v @l ()

To simplify Eq. (26) we substitute p — —p in the second term in the square brackets and write out y = poy° + piy’

=Y us(P)us ()7 = 7+ im)y°, (27)
=Y v (@0 (° = (= im)?". (28)

- s d3p ip(T—
W@ @) = [ G [0+ 0 Emet = = mpe ] (29)
- d°p — 9 P(E—Y)1 - 5(3)(-*_ 7)1 (30)
= (27)32E, Poc 4x4 = T —Y)laxa-

Similarly one can show {¢(Z),¢(#)} = 0 = {¢T(Z),¢!(7)}. Note that ¢’s are Dirac spinors with 4 components 1, o =
1,2,3,4 and therefore we computed a 4 x 4 matrix. We can write out the spinor indices as

{a(@), 05} = 6ap8™ (7 - §). (31)

Exercise 9

We want to express the Hamiltonian, given by:

H:i/d3x1/;(7i8i+m)z/1, (32)
in terms the the creation and annihilation operators for the Dirac fields. First begin by using the equation of motion
(V"0 +m) ¥ =0, (33)
to rewrite _
(7’8 +m) ¢ = =700, (34)
and hence
H=—i / a3z %000 . (35)

We now need to plug in the expansions (6) from the problem sheet, and compute. First of all,

d3 1 2 o .
0 2 gt —iq-T
801/) / \/ﬁ 7"7 q0 ra [ *U'T q_je TE bq’ UT(qje B :| (36)

and so
- [oa [ 25 Vo) Zqow (ague (@7 ~ trfvn (o777 | (37

Now, we have no choice but to plug in the expression for 7 in terms of b°, a*' and expand

d3p d3q
7/d3x// Z [GST‘"UT Pur(@)e ™ P DT 4 b5 alol (P, (§)e'PTDT
(2m)° 2,/ aEﬂ

Sl (P (e DT b b?vl(ﬁ)vr(cf)e“ﬁ_@'i] ~

11



The spatial integral gives d-functions in momentum space

&’p d’q 3) 3)
~ | s Z [ o @0 50 b il @0 7+ 0

a2V ul (Ben (@3 7+ @) — b b ol Gon(@0P (5 - D)

dp Do st r s T
=~ [ o9, a1 + b )

—asj bl gt

Ml B (~5) = b Vol (B ()]
:/ dpgz[a ajul (7, (5) + b 0ol (7)ur ()

—a ol (7)or () — b Vol (e (7]

where in the last line we used the fact that pg = —F,. The dot products ul - v, etc can be calculated from the explicit form
of the wave functions given in lectures. This gives

ul(P) - ur(@) = 2v/p°%, . oL@ v (@) = 2v°%, . ul(B)vn(@) = ol (@)ur(@) = 0. (38)
Using these identities one finds
d3p ST s S S'f'

) (39)

d p asTas + bs’(bs _ (27T)3(5(3)(0)} )

Upon normal ordering, we obtain

HZ/ (;iiz))?’Eﬂ[ *f +bSTbS] (40)

Exercise 10

We will quantise a spin 1/2 Dirac field with boson commutation relations, which is wrong because you need anti-commutation
relations for fermions. The discussion here closely follows chapter 5.1 in Tong’s notes.
First we expand ¢ (Z) and ' (#) with creation and annihilation operators as in Eq. (6) on the problem sheet. Then we
impose boson commutation relations

lag, ag'] = (2m)367 60 (- @), [bf b = —(27)%67*6®) (5 — §) (41)

P g

with all other commutators vanishing. Now we can repeat exercise 8 with commutation instead of anti-commutation relations.
Using the expansions of ¢ and 1 in (6) on the problem sheet and only writing out non-vanishing commutators we find

pEe = Y [P L e Pl o) @@ T ] )

s,r=1

- / WSZE}E {(P(‘i‘ im)’Yoeiﬁ(fim + (7 — Z.771)’%)671.1?(577;)}po:Eﬁ . o

This is the same result as in Eqgs. (27)-(28) in exercise 8. We showed in exercise 8 that the last expression can be simplified
to give 6 (Z — ¥)14x4. Therefore

[Va (@), ¥} (D) = 6058 (& — 9, (44)

where o, 8 € {1,2,3,4} are spinor indices. We also find [¢(Z), ¥s(¥)] =0 = [wl(f),w};(g)]
Let us compute the Dirac Hamiltonian

H= i/d%&z/?(vi@i +m)y. (45)
As in exercise 9, our strategy will be to use the expansion of v, 9" in terms of creation and annihilation operators from Eq.

(6) on the problem sheet and then simplify the result. Since we expect a simplification similar to what happened in exercise
9 to happen again, we start by looking at:

2 3
(Y 0; + m)y = Z / (27T)§ pTEﬁ [(’yl(zpi) + m)us(15')(1%61"7"'E + (v (—ip;) + m)vs(ﬁ)v;fe’iﬁ'ﬂ (46)
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We simplify this using

(i+mus(P) =0 = ip;y7us(p) = (ipoy° — m)us(p) (47)
(—ig+ms () =0 = —ip;y/0s(p) = (—ipoy” — m)vs(p) (48)

so once again the masses cancel out and we are left with a term proportional to pyy°us () and one proportional to —pyy°vs(p)
in Eq. (46). Noting that py = —Ejp (since P’ = Ej) and proceeding to the change of variables p — —p'in the v, term, we get

(o my =y / (;jj V(2 [y = =) 7 (49)

Therefore the full Hamiltonian becomes

H = i/d3x(wT70)(7iaZ_+m)¢ .
B sg:l/d3 /d pd& \/7@ a u ((j)+biq r( lj)} [ ﬂuS(ﬁ) 7bsjﬁv‘9(*m} eif'(ﬁf‘f) (51)

- Z/ 5 28y (aglas — o) (52)

= Z / (‘21;7;3@ alas— o205+ (27r)36(3)(0)). (53)

We remove the Dirac delta function in the last line by normal ordering. The —b?b% term means that we can reduce the
energy by creating b particles, i.e. the energy is unbounded below. Because of the wrong commutation relations we are
using, even if we were to redefine bs bST bST — bs, and then re-do the normal-ordering procedure, the problematic term
would be negative, which means there is no redeﬁmtlon we can do to make it bounded from bellow. (Note that if we had
been using anti-commutation relations and had gotten this result, this redefinition would have done the trick, so this is truly
a consequence of the wrong commutation relations that we were using.)

Exercise 11

We want to compute the Feynman propagator of the Dirac field, which is defined as

(Ol () (y)]0)  for a® > y°,

Srla ~9) = TV (R I = {—<0|w<y>w<x>|o> for 2% < 4°.

In the case 2° > y° we have

3 3
O = Y | o 57 O (e e e ) (it @ @) o) 65)

s,r=1

Z d3pdiq 1 . ) .
N / (2m)6 EaEq<0|aﬁaqj“5(ﬁ)ur(‘T)@ (pz=av)0). (56)
g

s,r=1

Now, performing the anti-commutation a%ag = TT az+ (27)36,.50) (7 — ¢) and performing the resulting delta function, we

have, using the first spin sum identity proven in exer(nse 7,

d p 1 Bp 1 . in(n—
0 )]0) s ip(z—y) _ /  (—f— ip(z—y) 57
O ()E()I0) us (7)) Y e (57)
Writing out the spinor indices «, 3 this gives (in the case 20 > y)
d*p 1
Se(e = as = [ (a1 — imag)?D. (59)
(2m)3 2E;
The case 2° < y° works similarly,
Sk —y)ap = <0|¢ Y (2)al0) (59)
d3pd3 1 st —i S - i T igr | g —ig:
-y | ot 37 O (a1 m@ae™" 4 b (F)ac™ ) (afr @ac™ + V] vn(@ac™") 0X60)

s,r=1

d>pd3q 1
= g 7<O|bsb Ub(ﬁ),(ﬂ},((j) elPy= qm)|0> (61)
e 1/ 6 2\/E;E;

13



Now, anti-commuting and using the second spin sum proven in exercise 7,

3 3
(Sr(T —y))ap = / (Zﬂ' 3 211? <Z vs(D)Ts ﬁ)) e~ip(z—y) _ _ / (27:531;% (—9/+ im) .4 e~ ip(—y) (62)

af

Finally we write both cases 2° > 3° and z° < ¢° in one formula as

3
(Sp(x—9y))as = / (if)’g 21155 [0@0 —4°) (= — im) s €Y = 0(y° — 2°) (=P + im) 5 e—iw—y)] : (63)

Having obtained this expression for the Feynman propagator, we can use complex analysis techniques to see how it can be
recovered from a 4-momentum integral of the form:

d4p (Zﬂ_ m) eip(m—y)
/7 oy

2m)4 p2 + m? — ie

upon choosing a particular prescription for avoiding the two poles of the integrand occurring on the mass-shell p?> = —m?2 in

momentum space, or, in p° space, p° = TEy

Unlike the computation for the retarded propagator of a scalar field, the Feynman propagator here contains two terms of

which only one is non-zero according to the time ordering of the fields. Following the same logic used in the case of the

scalar field propagator, we thus move one of the poles into the upper plane so as to be caught inside the contour for z° < ¢/°,

while moving the other down into the lower half plane so as to be caught inside the semi-circular contour employed in the
0 0

case z° > y".

This regularization is achieved by making the replacement:

1 1 -1
— - = 5 65
prEmE o p? e (p°+,/Eg—z'e) (po— Eg—ie) (%)
which, in the limit € — 0 has simple poles at
P =E(E— i) +0(e?), (66)

2E~

i.e. Eyis perturbed downwards while —FEj is perturbed upwards (see figure). That this gives the right result for Sp we ow
demonstrate.

+
m

ommmm

+E,-ie

Figure 1: The pole prescription for evaluating the Feynman propagator.

The residue at each of these poles in the above limit are:

-1 ; 0¢..0_ 0 1 . 0o o
limRes [ —————— 7 (@ =9 0 — 4 JE2_je | = F_—Filsle—v") 67
e—0 ((p0)2 _ E; + i€ p 2Ep ( )
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Therefore, when 2V > 4%, employing Jordan’s lemma and the residue theorem as before, and remembering that there is an
additional factor of —1 form the clockwise direction of the contour, we have:

d'p  (f—m) Bp 1 (if—m) g0 0y i3
lim _eip(z—y) (—2m’)/ — e~ 1B (2" —y") pip (F—7) (68)
e—0 ) (2m)% p%2 +m? —ie (2m)3 2 —2Ej; PO—Ey
3 .
/ d p (_lf_ Zm) eip(m—y) , (69)
(2m)3  2Ejp PO=Ey
which coincides with Sg(z — y) for 20 > ¢°.
For 2% < 9% we instead close in the upper-half plane and obtain
d4 i ) B 1 (if— . e o
hm/ p4 2(221 2771) : elp(d?*y) — (27T’L)/ pgi(lﬂ m) 61E5(x07y0)61p4(x7y) (70)
e—0 ) (2m)* p?2 +m?2 —ie (2m)3 27 2Ejp POy
3 .
_ / d p3 (¢ —im) ot Ep(a®—y°) yip () (71)
(2m) 2E5 PO——Ey
3 .
_ / Cp' B —im) g, @—y0) -7 @) 7 (72)
@np 2By P
where, in the last line, we have changed variables p? — p’* = —p’ for all three spatial components. We made this change
because in the line before, neither the p nor the exponent were explicitly Lorentz scalars when p° = —FEz. With this change
of variables, we obtain:
Vip——p, = [9""+07]]0-_p, (73)
By +p'y' (74)
', (75)
We finally obtain
4 L , 30 (—of! 4 ,
hm/ d p4 2(”{ Qm) : erl@e—y) — _ / d p3 ( Y+ Zm) e~ (x—y) ’ (76)
e—0 ) (2m)4 p2 +m?2 — ie (2m) 2Ey O
and this is precisely the expression for Sg(z —y) when y° > 2°.
Finally we verify that Sr is a Green’s function for the Dirac operator:
d4p ip(xz— Zﬂf m
@t mSela=9) = @tm) [ Rz F (77)
d’p W= ipa—y)
j —— PV 78
| Gt m) e (78)
4 2 2
_ / dp —V7 =M ip(ay) (79)
(2m)* p? 4+ m?
= Wz —y). (80)
Here we used 1
P2 ="y po = papry {1%7"} =% (81)
Exercise 12
In Maxwell Theory, the dynamics of a co-vector field A, (x) are governed by the Lagrangian
1 Wo VT 1 3%
L= _ZF/,LVFO'TTI n = _ZFHVF
in terms of the field-strength (or Faraday) tensor
ELV = ap,Au - 61/Ap-
Under the ‘gauge’ transformation
A, —s Ay + 0,E, (82)
for £ any smooth function, the field-strength changes according to
F;w — au (AV + auf) - al/ (AN + aﬂg) = aMAV - 81/AM + 85,1/6 - 83p§
= F)U'V
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Where in the last line we employed the fact that mixed partial derivatives commute. We see then that under (82), the
field-strength, and therefore the Lagrangian, is unchanged - i.e. gauge invariant.

Now, for space-time translations z* — z* + a*, the field transforms by Taylor’s Theorem as
Au(z) — Ay +a”0,A,(x) + O(a?),
ie. 64, =a"A,A,, where AyA, = 0,A,. For the field-strength,
Fo— F,, + aAﬁfL)\Al, - a)‘af,\AM + 0(a?) = F,, + 0y (aAFW) + 0(a?),

with everything evaluated at the space-time point z#. Putting this transformation into £ above, we see that the first order
change in the Lagrangian is

1 1
L L= 50, (a*Fl) Fpron’™ = L — ne (a*F, F*)
or 6£ = O0x(a*L), a divergence.

By Noether’s theorem, we obtain conserved currents T* for each space-time direction given by the formula (Schroeder &
Peskin p. 18)

oL
© — _ TJH
Tl/ a 3;“4,\ AVA)\ ;7,, 5 (83)

where, in this instance, J# = 6/ L. Calculate that

OF,
T — §HEY — §USH

a aﬂAy oVt ovT

so that
oL B _1 OF,r s
00,4, 200,A,
1

= 5 (Ohsr — gy P
— _% (F/J.V _ Fl/p.)
= F"H, (84)

by skew-symmetry of the field-strength (i.e. F},, = —F,,). Altogether, the array T*,, or Energy-Momentum Tensor, is given
by

1
TH = FM9, Ay + 1O0FT For.

Let us raise the v index,
1
THY F}\}L&I/A)\ 477;“/ FoT Fo"r-

Manifestly, this quantity is not a symmetric tensor and cannot be gauge invariant, since under (82)
FMOY Ay — FAMOY Ay + FMOYONE,
the second term of which does not, in general, vanish; very undesirable properties for an energy-momentum distribution.

Instead, let us examine the following tensor
O = T — A A
1
= FMOVAy — FMOL\AY + Zn’“’F‘”FM

1
= P07 Ay = A + g FTE,
A ov 1 vV o7
= F HFO'An + Zn“ F FO‘T

1
= FYFS+ 0" F7 Fyr
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which manifestly is gauge invariant. Furthermore
ovr  — F}\I/F,LL 1 Vi poT B
- by + 177 oT
1% 1 v oT
= -F AF‘f\+1n“ F°"F,,
1
= —F4F* 4+ Zn‘“’F‘”FM
1
= FYFM™ 4 S F o

where we interchange indices v <+ X in the second line, picking up one factor of (—1), simultaneously raise/lower A in the
third and swap indices again in the final line.

This new tensor is traceless since

1
", = FMF,+ dejF‘”FgT
= —FMFu+F7F,,
= 0.
Finally, we show that ©"" is also conserved. However, a Noether current is only conserved when the fields are ‘on-shell,’ i.e.
satisfy the field equations, which we must therefore calculate:

oL oL
0 = o (a auAV> 04,

= 9 F",

where the calculation (84) from earlier was used. Now,the divergence of ©*" can either be found by long-hand (extremely
tedious) or using the a-priori fact that T+ is conserved.

90" = 9T — (9, F ) O\AY — FMO2\A,,

the first term of which vanishes by Noether’s theorem, 9,T*” = 0, the second vanishes by the field equations and the
remaining term F A“@i 4 A, vanishes since F* is skew in A p but 82)\14” is symmetric in A p.

The new object ©#" therefore defines a symmetric, gauge-invariant, trace-free and conserved tensor and is thus a candidate
for a physical energy-momentum tensor. Notice also that when the fields are on-shell, the difference TH” — ©*" is simply a
divergence, so that the two tensors describe the same physics.

Exercise 13

The Lagrangian

1 1
L= _ZFWFW + imQC’HC’“ , where F,, = 0,C, — 0,C,,

has the same dependence on the field derivatives OC' as the Lagrangian governing electrodynamics in the previous question,

oL

= F"*,
00,C,
The field equations are therefore
oL oL
0 = 0 —
a (8 GHCV> oC,
= O, F"" —m?C". (85)

Upon taking the divergence we find
0= 82,,F”“ —m?9,C".

The first term vanishes due to symmetry of second partials and skew symmetry of the field-strength, leaving
m29,C" = 0.

If m is non-zero, we see that the fields satisfy
0,C* = 0.
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To obtain the field equation for Cy, set v = 0 in (85),

0 = 9 F*—m?C°
O F" = §;F%
= 9;(0°C"—9'C")
= —0,C"—9,0'C"
=0 = —0,C"-09,0'C"—m*C°
= 0,0'Co+m’Cy = 0;C",
where we variously use the fact that (in the conventions of this course) the Minkowski metric is diag(—1,1,1,1), so that
0y = —0% and Cy = —C°. The field component C, therefore satisfies the inhomogeneous Helmholtz equation

(V2 + m2) Co = (9101,

which, subject to sufficiently nice asympototic behaviour, possesses a unique solution for Cy. For instance, the Green’s
function for the operator V2 + m?2,

im|x|
e
G(x) = ——
(9= Tpar
provides the following solution _
0;CHt,y) .
Co(t,x) = / d3y7( y) etmly—xI,
R3 dnly — x|
Recall that the momenta II* conjugate to the C), are defined by
= 9%
0C,
Again using (84), this gives the following expressions
0 , =20

o _ Op _ ) .
I =-r _{—8OCZ+8lC° p—i

The velocities of the dynamically relevant variables C; are thus given by
C; =1I; — 9;C°.

Having found this inverse relation between the momenta and the dynamical velocities, the Hamiltonian density can now be
computed

H = I,C*—L
= II; (I; - 9,C°) + lFOiFg + Ypip, — Ln2o,onm
T 1 K3 2 2 4 1] 2 1%
The term quadratic in F% contains no time derivatives and so may be left intact, however, the second term must be
re-expressed as a function of the IT#,

FUFy = (8°CT - 9°C°) (8:C; — 0:Ch)
= (~¢'-dc”) (¢Gi-a.0)
= I,

The complete expression for the Hamiltonian density is therefore

H[I,,C,) = %Hiﬂi - %F%‘jFij — %mzC”CM +C° (9;I") — 9; (I C°)

Where the troubling additional term —II; 3*Cy has been written as
Cc° (8,I1') — 0; (I C?) ,

which involves an irrelevant 3-divergence term. Since the remainder of the Hamiltonian contains no derivatives in C°, C°
may be regarded as a multiplier, that, in the m = 0 theory, imposes the constraint V - IT = m2C° = 0, which is precisely
Gauss’ Law.
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