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Exercise 1

Let us start from the Maxwell action: ∫
d4x

1

4
FµνFµν . (1)

The equations of motion are then:
∂µF

µν = 0 . (2)

Expanding into spatial and time components, recalling that Aµ =
(
ϕ, ~A

)
, we get:

∂µF
µν = ∂µ (∂µAν − ∂νAµ) → ν = 0 ⇒ 2ϕ+ ∂t(∂tϕ+ ~∇ · ~A) = 0

∇2ϕ = 0 ; (3)

ν = i ⇒ 2Ai − ∂i
(
∂tϕ+ ~∇ · ~A

)
= 0

2Ai − ∂iϕ̇ = 0 , (4)

where, in (3) and (4), we have imposed the Coulomb gauge condition, ~∇ · ~A = 0. We see that the ν = 0 equation for ϕ is
only a constraint equation, in the sense that ϕ has no equation of motion with a double time derivative, and therefore is not
a dynamical field. Provided appropriate boundary conditions, it can therefore be solved for all times in terms of the other
dynamical fields ~A by solving the constraint equation (3) and substituting it in (4).

Since (3) only fixes ϕ up to some (possibly time-dependent) integration constants, our gauge choice ~∇ · ~A = 0 does not
completely fix the gauge. To fix this residual gauge freedom, we can impose ϕ = 0. To show this makes sense, let’s say
we start fem a gauge where ϕ 6= 0, and show it is possible to make a gauge transformation to the ϕ = 0 gauge. That
is, if ϕ = f(t) where f is an arbitrary function of time, we can make the gauge transformation Aµ → Ãµ = Aµ + ∂µλ
(where λ is an arbitrary scalar function) by choosing ∂tλ = −f(t) (note that we know this is always possible since this
is a gauge transformation and so Ãµ still satisfies the equations of motion, in particular ∇2ϕ̃ = ∇2(ϕ − ∂tλ) = 0) and
∂i∂iλ = 0, which always has a solution. Making this gauge transformation, we remain in the Coulomb gauge, since then
~∇ · ~̃A = ~∇ · ~A−∇2λ = ~∇ · ~A = 0

Now, looking at the operator

Pij = δij −
∇i∇j
∇2

, (5)

we can show that this is indeed a projection operator if we show PijPjk = Pik (note that here, (∇2)−1 is defined as the
Green’s function for the Laplacian). Therefore:

PijPjk = δijδjk − 2δij
∇i∇k
∇2

+
∇i∇j
∇2

∇j∇k
∇2

= δik − 2
∇i∇k
∇2

+
∇i∇2∇k
∇2∇2

= Pik . (6)

We can read off the propagator from Maxwell’s Lagrangrian in the Coulomb gauge:

LCoulomb =
1

4
FµνF

µν = −1

2
Ai2Ai . (7)

Therefore, the propagator is:

DF (k)Coulombij =
δij

k2 − iε
. (8)
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The Coulomb gauge fixed propagator that was defined in class is

D̃F (k)Coulombij =
1

k2 − iε

(
δij −

kikj
k2

)
. (9)

To argue that DF (k) and D̃F (k) are indeed equivalent at tree level for physical processes, we only need to realize that(
δij − kikj

k2

)
being a projection operator, the role it plays in the propagator is to project out the two physical degrees of

freedom of the photon out of the three dimensional vectors it acts on. Since at tree-level there are no virtual particles in
loops and all the states are on-shell, the projection operator acts trivially.

Exercise 2

We’ll solve this question in some detail highlighting several general features of the calculation. Consider the potential

V (q) =
1

2
mω2q2 (10)

This is the harmonic oscillator, one of the two solvable problems in quantum mechanics, the second one being the hydrogen
atom. All paths q(t) have the property that

q(0) = qi, q(T ) = qf (11)

In this case, the classical path will play a role in the evaluation of the path integral. We will expand q(t) about the classical
path qc(t), which is defined as the path obeying

q̈c + ω2qc = 0, qc(0) = qi, qc(T ) = qf (12)

This equation is easy to solve, all solutions must include sinωt and cosωt with the general solution being a linear combination.
However it is much nicer to choose sinωt and sinω(T − t)1. Now,

qc(t) =
1

sinωT
(qf sinωt+ qi sinω(T − t)) (13)

which solves (12) and satisfies the boundary conditions. The action for the classical path is given by

S[qc] =
1

2
m

∫ T

0

dt(q̇2c − ω2q2c ) (14)

Integrating this by parts we get,

S[qc] =
1

2
m [qcq̇c]

T
0 −

1

2
m

∫ T

0

dt qc(q̈c + ω2qc) (15)

where the last integral vanishes since qc obeys the equation of motion (12). Substituting the boundary conditions in (15) we
get

S[qc] =
1

2
m (qf q̇c(T )− qiq̇c(0)) (16)

Using the explicit solution (13), we get

S[qc] = mω
−2qfqi + (q2f + q2i ) cosωT

2 sinωT
(17)

Now comes the clever bit, we can write a general path as

q(t) = qc(t) + f(t), f(0) = f(T ) = 0 (18)

For S[q] quadratic in q then
S[q] = S[qc] + S[f ] (19)

is exact since S[q] is stationary at q = qc. (If you vary the action, you get the classical equations of motion - that is what
the action comes from) i.e. note that there are no linear terms in f . This is analogous to expanding a function around a
minimum, where the first terms in the expansion will be the value of the function at the minimum and a term quadratic in
the deviation from the minimum.
We have also assumed that f is small, meaning that only paths close to the classical path will contribute to the integral.
Furthermore, we can assume

d[q] = d[f ] (20)

1These are actually identical in the case ωT = nπ for some integer n. In this case there is no classical solution unless q = (−1)nq0. This special
case is ignored here.
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which is true for ordinary integrals, namely that d(x+ a) = dx for constant a (this is also makes sense in terms of the more
formal definition of the measure of the path integral given in lectures). We can now write that in this particular example,

K(qf , qi;T ) =

∫
d[q]eiS[q] = eiS[qc]

∫
d[f ]eiS[f ] (21)

Note that the integral is independent of qi, qf , thus all the dependence on the initial and final points is contained in the pre
factor. There are various ways to derive the second factor: we use the one which is potentially useful later on in AQFT.
Expand f(t) in terms of a convenient complete set. We use a Fourier sine series for f :

f(t) =

∞∑
n=1

an

√
2

T
sin

nπt

T
(22)

The sine functions form an orthogonal basis for functions vanishing at t = 0 and t = T . We can write, integrating by parts,
noting f(0) = f(T ) = 0 and using orthonormality,

S[f ] = −1

2
m

∫ T

0

dtf(f̈ + ω2f) =
1

2
m
∑
n

a2n

(
n2π2

T 2
− ω2

)
(23)

We assume the relation

d[f ] = C

∞∏
n=1

dan (24)

where C is a normalisation constant.2 We are now in a position to express the integral in the form∫
d[f ]eiS[f ] = C

∞∏
n=1

∫
dane

im2 a
2
n

(
n2π2

T2 −ω
2
)

(25)

The basic interval (solved by rotating the contour) is∫ ∞
−∞

dye
i
2λy

2

=

√
2πi

λ
(26)

It is convenient to write ∫
d[f ]eiS[f ] = C0

∞∏
n=1

1√
1− ω2T 2

n2π2

(27)

where we have absorbed constants like (
∏∞
n=1 n)−1 into C0. This factor is divergent, but does not depend on any of the

critical parameters. (We will of course not talk about infinities here). In the free case ω = 0, this product is equal to one
and we are left with

C0 =

√
m

2πiT
(28)

which fixes the normalisation. This result was derived for the free theory in lectures. See also Hugh Osborn’s AQFT notes
for details http://www.damtp.cam.ac.uk/user/ho/Notes.pdf. What can we say about this infinity product? It can be shown
that

∞∏
n=1

(
1− ω2T 2

n2π2

)
=

sinωT

ωT
(29)

(Note that both sides have the same zeros as functions of ωT . Furthermore, they both go to one as ωT → 0. Several other
observations show that both sides have the same behaviour and are actually identical.)
Ultimately, ∫

d[f ]eiS[f ] =

√
mω

2πi sinωT
(30)

which is a nice everyday function. The overall result, in all its glory, is the following:

K(qf , qi;T ) =

√
mω

2πi sinωT
eimω

−2qf qi+(q2f+q2i ) cosωT

2 sinωT (31)

To check this, note that there are eigenfunctions |n〉 of Ĥ with

En =

(
n+

1

2

)
ω, 1̂ =

∑
n

|n〉〈n| (32)

2Thinking about the formal definition of the measure of a path integral (lecture notes/almost any book on QFT that does path integrals,
e.g. Zee), if we consider tr = εr, with ε = T/(n + 1), then the transformation from f(tr) : r = 1, · · · , N to an : n = 1, · · · , N is an orthogonal
transformation so that

∏
r df(tr) =

∏
n dan
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A formula that can be obtained by using standard quantum mechanics is

K(qf , qi;T ) =
∑
n

ψn(qf )ψ?n(qi)e
−i(n+ 1

2 )ωT (33)

In the situation where T = −iτ, τ →∞
2i sinωT → eωτ , 2 cosωT → eωτ (34)

We find that

K(qf , qi;−iτ)
τ→∞−−−−→

√
mω

π
e−

1
2ωτe−

1
2mω(q

2
f+q

2
i ) = ψ0(qf )ψ?0(qi)e

− 1
2ωτ (35)

In this special case, the results match.

Few Comments:

1) Generally speaking, integrals of the form
∫
dx eiλx

2

are rather ill-defined because they do not converge absolutely.

It is much better to consider integrals of the form
∫
dx e−λx

2

for λ > 0. The same thing happens with path integrals; note
that

S[q] =

∫ T

0

dt

(
1

2
mq̇2 − V (q)

)
(36)

is normally a real quantity. But in order to obtain well-defined integrals, we consider an analytic continuation of time

t→ −iτ, T → −iτ1 (37)

so that the path integral now becomes

〈q|exp(−Ĥτ)|q0〉 =

∫
d[q]e

−
∫ τ1
0 dτ

(
1
2m( dqdτ )

2
+v(q)

)
(38)

The point is that the RHS integral above has a rigorous definition for a wide class of potentials V , subject to the requirement
that V is bounded from below.

2) Path integrals provide a method for making non-perturbative approximations; we will show this for the example of
tunnelling. A widely know example form quantum mechanics is that particle can tunnel through a potential barrier. Con-
sider a potential V (q) with 2 minima at q0 and q1, i.e. shaped like a ”W”. We want to calculate the amplitude to get from
q0 at time t0 to q1 at time t1, eventually taking the limits t0 → −∞ and t1 →∞. So use the path integral to valuate

〈q1|exp(−iĤ(t1 − t0)|q0〉 (39)

One way of proceeding with there path integrals is to expand around a classical path

q(t) = qc(t) + f(t) (40)

where the classical path qc(t) satisfies the classical equations and given boundary conditions. In general, there will not
necessarily be a classical path; here this is in the case when the total energy is smaller than the maximum of the potential
between q0 and q1. We make use of analytic continuation t→ −iτ , such that

iS[q] = −
∫ τ1

τ0

dτ

(
1

2
m

(
dq

dτ

)2

+ V (q)

)
(41)

and we are interested in the limit t0 → −∞ and t1 →∞. (Note that this actually means that we choose a different contour
in the complex place to evaluate the integral. This is a method commonly used to evaluate integrals over analytic functions
and we have infact already used it in the calculation above. One makes use of this in the method of steepest descent for e.g.)
The classical equation for qc(τ) is now

−m d2

dτ2
qc + V ′(qc) = 0 (42)

which we integrate once to get

− 1

2
m

(
dqc
dτ

)2

+ V (qc) = E (43)

This is similar to classical mechanics, but with one sign flipped because of our funny change in time. We want a situation in
which as τ → ±∞, q(τ) → q0 or q(τ) → q1, where V (q0) = V (q1) = 0. But if it is smoothly going to these points we must
also have

dqc
dτ

∣∣∣∣
q=q0

=
dqc
dτ

∣∣∣∣
q=q1

= 0 ⇒ E = 0 (44)
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In this situation we can actually solve this, assuming q1 > q0 and therefore taking the positive square root, we get

dqc
dτ

=

√
2V (qc)

m
(45)

Now substitute this in to evaluate iS[qc],

iS[qc] = −2

∫ ∞
−∞

dτ V (qc) = −
∫ q1

q0

dq
√

2mV (q) (46)

because dτ = dq
√
m√

2V (q)
for this solution. As we have seen in the case of the harmonic oscillator, the dependence of the path

integral on the initial and final points is contained in eiS[qc], so the tunnelling amplitude will be proportional to

e
−
∫ q1
q0
dq
√

2mV (q)
(47)

This is an exponential suppression which is a real quantity, non-zero in all cases, also known as the Gamov factor. The path
integral calculation gives the same result as WKB in a relatively simple way.

Exercise 3

As the question says, this is bookwork and can be found in most QFT textbooks. For a free version, see pages 18-24 of Hugh
Osborn’s advanced quantum field theory lecture notes, available at: http://www.damtp.cam.ac.uk/user/examples/3P5a.pdf.
Let us begin by calculating a so-called n-point correlation function. This is defined as

lim
T→∞

〈0|Tφ(x1) . . . φ(xn) exp(i

∫ T

−T
Hdt)|0〉 =

∫
Dφ φ(x1) . . . φ(xn)eiS∫

Dφ eiS
. (48)

We take the ratio because the path integral is defined up to a normalisation constant.
Now, let us express this correlation function in terms of the sourced path integral

Z [J ] ≡
∫
DφeiS+iJφ , (49)

to get

〈0|T {φ(x1) . . . φ(xn)} |0〉 =

(
−i δ

δJ(x1)

)(
−i δ

δJ(x2)

)
. . .
(
−i δ

δJ(xn)

)
Z[J ]

Z[0]

∣∣∣∣∣∣
J=0

, (50)

where we have also used the short-hand notation

T {φ(x1) . . . φ(xn)} ≡ lim
T→∞

Tφ(x1) . . . φ(xn) exp(i

∫ T

−T
Hdt) . (51)

Let us begin by studying free scalar theory. Then

Z[J ] = Z[0] exp

(
i

2
JA−1J

)
, (52)

where “JA−1J” is shorthand for ∫
dx dy J(x)A−1(x, y)J(y) , (53)

and A−1(x, y) is the Green’s function from lectures

A−1(x, y) =
1

−2 +m2
(x, y) . (54)

This allows us to calculate the free two-point correlation function

〈0|T {φ(x)φ(y)} |0〉 =

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)
exp

(
i

2
JA−1J

)∣∣∣∣
J=0

= (−i)2
[
iA−1(x, y) +

∫
du iA−1(x, u)J(u)

∫
dv iA−1(y, v)J(v)

]
exp

(
i

2
JA−1J

)∣∣∣∣
J=0

= (−i)2 iA−1(x, y)

= −iA−1(x, y) ,

(55)
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where we see that because the path integral is evaluated at J = 0, no free Js can survive after differentiation, except for
in the exponential. Thus, we see that the 2-point correlation function is just (−i) times the Green’s function and we can
express it diagramatically by a line joining points x and y.
Similarly, for the 4-point correlation function

〈0|T {φ(x)φ(y)φ(z)φ(w)} |0〉 =

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)(
−i δ

δJ(z)

)(
−i δ

δJ(w)

)
exp

(
i

2
JA−1J

)∣∣∣∣
J=0

= (−i)4
[
iA−1(x, y) iA−1(z, w) + iA−1(x, z) iA−1(y, w)

+iA−1(x,w) iA−1(y, z)
]

exp

(
i

2
JA−1J

)∣∣∣∣
J=0

=
(
−iA−1(x, y)

) (
−iA−1(z, w)

)
+
(
−iA−1(x, z)

) (
−iA−1(y, w)

)
+
(
−iA−1(x,w)

) (
−iA−1(y, z)

)
(56)

We can draw diagrams for these terms again by joining the three pairs out of x, y, z, w by lines and for each line between the
points, say x, y we associate a propagator −iA−1(x, y).
Let us now study interactions before moving to momentum space (which we will show is relevant for scattering). The
interacting 2-point correlation function can also be written as

〈0|T {φ(x)φ(y)} |0〉 =

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)
Zint[J ]

Zint[0]

∣∣∣∣∣∣
J=0

, (57)

where

Zint [J ] =

∫
DφeiSfree−iV (φ)+iJφ = exp

[
−iV

(
−i δ
δJ

)]
Zfree [J ] . (58)

For φ4 theory the potential term is V (φ) = λ
4!φ

4 giving

exp

[
−iV

(
−i δ
δJ

)]
= exp

[
−i
∫
du

λ

4!

(
−i δ

δJ(u)

)4
]
, (59)

which we Taylor expand

exp

[
−iV

(
−i δ
δJ

)]
= 1− i

∫
du

λ

4!

(
−i δ

δJ(u)

)4

+ . . . . (60)

Now we can calculate the numerator of (57)(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)
Zint[J ]

∣∣∣∣
J=0

=

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)(
1− i

∫
du

λ

4!

(
−i δ

δJ(u)

)4

+ . . .

)
Zfree [J ]

∣∣∣∣∣
J=0

= Zfree[0]

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)(
1− i

∫
du

λ

4!

(
−i δ

δJ(u)

)4

+ . . .

)

× exp

[
i

2
JA−1J

]∣∣∣∣
J=0

= Zfree[0]

[
−iA−1(x, y)− iλ

∫
dz
(
−iA−1(x, z)

) (
−iA−1(z, z)

) (
−iA−1(y, z)

)
−iλ

(
−iA−1(x, y)

) ∫
dz
(
−iA−1(z, z)

) (
−iA−1(z, z)

)
+ . . .

]

(61)

Again, we can express these terms diagramatically to find again the first term corresponding to a propagator from x to y
which gives a contribution −iA−1(x, y). The second term corresponds to a propagator with a loop attached. Each propagator
gives a contribution −iA−1 while the vertex gives the contribution −iλ. The final term is disconnected: it is a propagator
from x to y again and a vacuum diagram.
David Tong’s lecture notes (section 3.7) discuss that these diagrams factor as(

−i δ

δJ(x)

)(
−i δ

δJ(y)

)
Zint[J ]

∣∣∣∣
J=0

= (connected diagrams)× (vacuum bubbles) . (62)

Returning to (57) we see that the denominator will just give the vacuum bubbles so that the whole two-point correlation
function is just

〈0|T {φ(x)φ(y)} |0〉 =
∑

(connected diagrams) . (63)
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Finally, we want to go to momentum space which corresponds to calculating∫
dx dy eipxe−iqy〈0|T {φ(x)φ(y)} |0〉 . (64)

It is sufficient to study the free correlation function to understand how the Feynman rules are modified. We find∫
dx dy eipxe−iqy〈0|T {φ(x)φ(y)} |0〉 =

∫
dx dy eipxe−iqy − iA−1(x, y)

=

∫
dx dy eipxe−iqy

∫
dk

(2π)
4

−i
k2 +m2

e−ik(x−y)

=

∫
dk

(2π)
4 dx dy

−i
k2 +m2

eix(p−k)eiy(k−q))

=

∫
dk dy

−i
k2 +m2

δ(p− k)eiy(k−q)

= (2π)
4
∫
dk

−i
k2 +m2

δ(p− k)δ(k − q)

=
−i

p2 +m2
(2π)

4
δ(p− q) .

(65)

Thus, we see that now overall momentum conservation is imposed (2π)
4
δ(pinitial − pfinal) and we use the momentum

representation of the propagator
−i

p2 +m2
. (66)

Finally, let us turn to scattering amplitudes.

〈q|S|p〉 =
√

4EqEp〈0|aqSa†p|0〉 . (67)

We can then write

a†p|0〉 ≈
∫
dxφ(x)e−ipx|0〉 (68)

and so we see that the scattering amplitude will give

〈q|S|p〉 ≈
∫
dxdye−ipyeiqx〈0|T {φ(x)φ(y)} |0〉 , (69)

so that n-particle scattering amplitudes are just Fourier transforms of n-point correlation functions. Thus, we summarise
that we get the following Feynman rules. Draw all connected diagrams with required number of external lines and label
external momenta where only 4-point vertices are to be included. Associate

• for every internal propagator a factor of −i
p2+m2 ,

• for every vertex a factor of −iλ,

• for every internal loop an undetermined momentum k and an integral with measure
∫

d4k
(2π)4

,

• impose momentum conservation at every vertex and overall by (2π)
4
δ(pin − pout).

Non-examinable details: LSZ reduction formula

Scattering amplitudes can be more carefully calculated using the LSZ reduction formula which states that

〈q1, q2, . . . qn|S|p1, p2 . . . pm〉 = in+m
∫
d4x1e

iq1x1
(
−2x1

+m2
) ∫

d4x2e
iq2x2

(
−2x2

+m2
)

×
∫
. . . d4xne

iqnxn
(
−2xn +m2

) ∫
d4y1e

ip1y1
(
−2y1 +m2

) ∫
d4y2e

ip2y2
(
−2y2 +m2

)
. . .

∫
d4yme

ipmym
(
−2ym +m2

)
〈0|T {φ(x1)φ(x2) . . . φ(xn)φ(y1)φ(y2) . . . φ(ym)} |0〉 ,

(70)

which can be further simplified by Fourier-transforming the (n+m)-point correlation function

〈0|T {φ(x1)φ(x2) . . . φ(xn)φ(y1)φ(y2) . . . φ(ym)} |0〉 =

∫
1

(2π)
n+m d

4k1 d
4k2 . . . d

4kn d
4l1 d

4l2 . . . d
4lm

×e−ik1x1e−ik2x2 . . . e−il1y2e−ilmym . . . e−ilmymG̃n+m(k1, k2, . . . , kn, l1, l2, . . . , lm) .

(71)

Then the LSZ reduction formula becomes

〈q1, q2, . . . qn|S|p1, p2 . . . pm〉 = in+m
(
q21 +m2

) (
q22 +m2

)
. . .
(
q2n +m2

) (
p21 +m2

) (
p22 +m2

)
. . .
(
p2m +m2

)
× G̃n+m(q1, q2, . . . , qn, p1, p2, . . . , pm) .

(72)

This is just saying that we calculate the (n + m)-point correlation functions in momentum space but don’t include the
propagator for the external legs (these are exactly cancelled by the

(
q2 +m2

)
factors).
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Exercise 4

We can do the same thing as in exercise three to obtain the Feynman rules. The only change now is that there is a 3-point
vertex which gives a factor of −iλ.
There are three tree-level diagrams

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

They have two vertices and one internal line whose momentum, k, is completely fixed by momentum conservation. Let us
label initial momenta p1, p2 and final momenta p3, p4. Then for the first diagram the internal momentum is

k = p1 + p2 , (73)

while for the second diagram it would be
k = p1 − p3 , (74)

and for the third it is
k = p1 − p4 . (75)

We then have the amplitudes

A1 = (2π)
4
δ (p1 + p2 − p3 + p4) (−iλ)

2 −i
(p1 + p2)

2
+m2

= iλ2 (2π)
4
δ (p1 + p2 − p3 + p4)

1

(p1 + p2)
2

+m2
,

A2 = iλ2 (2π)
4
δ (p1 + p2 − p3 + p4)

1

(p1 − p3)
2

+m2
,

A3 = iλ2 (2π)
4
δ (p1 + p2 − p3 + p4)

1

(p1 − p4)
2

+m2
.

(76)

A1 +A2 +A3 = Atotal ≡ i (2π)
4
δ(p1 + p2 − p3 + p4)M . (77)

Let us define the Mandelstam variables

s ≡ (p1 + p2)
2
,

t ≡ (p1 − p3)
2
,

u ≡ (p1 − p4)
2
.

(78)

Then, the total amplitude can be written as

Atotal = iλ2 (2π)
4
δ(p1 + p2 − p3 + p4)

[
1

s+m2
+

1

t+m2
+

1

u+m2

]
. (79)

Finally, the differential cross-section is given by

dσ

dΩ
=
|~p3|
|~p1|

|M |2

64π2E2
com

=
|~p3|
|~p1|

λ4

64π2s

[
1

s+m2
+

1

t+m2
+

1

u+m2

]2
. (80)

For further details see, for example, Srednicki, Quantum Field Theory, http://web.physics.ucsb.edu/ mark/qft.html
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